EMANE
User Manual

0.7.3

A~

\
:
;

11111111111111111111111111111

labs.cengen.com/emane

EMANE
User Manual
0.7.3

DRS CenGen, LLC

1120 Route 22 East

Building 1, Suite 7
Bridgewater, NJ 08807

February 29, 2012

ii

EMANE is being developed by the Naval Research Laboratory (NRL) under the OSD
Network Communication Capability Program (NCCP) and in cooperation with the
Army Research Laboratory (ARL) High Performance Computing Mobile Network Mod-
eling Institute (HPC MNMI) effort.

v

Copyright(© 2012 - DRS CenGen, LLC, Bridgewater, New Jersey

This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of
this license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons,
444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by/3.0/

Contents

1 Introduction
1.1 Overview

1.2 EMANE Demo Virtual Machine
1.3 EMANE Deployment Diagrams 00t

I Emulation Infrastructure

2 Infrastructure Basics

2.1 NEM Platform Server e
2.1.1 Centralized Deployment Example
2.1.2 Distributed Deployment Example L oo
2.1.3 NEM Platform Server Configuration Parameters
2.1.3.1 otamanagergroUp« .« . v vt e e

2.1.3.2 otamanagerdevice

2.1.3.3 otamanagerchannelenable

2.1.3.4 eventservicegroup

2.1.3.5 eventservicedeviceo e

2.1.3.6 debugport

2.1.3.7 debugportenable

2.1.4 Shared Configuration Parameters L Lo
2.1.4.1 platformendpoint e

2.1.4.2 transportendpointo

2.2 Transport Daemon L L e e e
2.2.1 Centralized Deployment Example
2.2.2 Distributed Deployment Example o

2.3 Demonstrations L. L e e e e e
2.3.1 Demonstration 1 L e e e e e
2.3.1.1 Demonstration Procedure o000

2.3.1.2 Concept Review e

2.3.2 Demonstration 2 L oL e e e e e
2.3.2.1 Demonstration Procedureo oL

2.3.2.2 Concept Review

3 Network Emulation Modules

3.1 Definingan NEMo e
3.2 Physical Layer e
3.2.1 Supporting Heterogeneous Waveforms L L oL

3.3 Medium Access Control Layer e

3.4 Shim Layer

4 Events

NN

10
11
11
12
12
12
13
13
13
13
14
14
15
16
17
18
18
19
20
21
21
22

25
26
27
29
29
30

33

vi CONTENTS

4.1 Event Service e e e e e e 33
4.1.1 Event Service Configuration Parameters 35
4.1.1.1 eventservicegroup i 35

4.1.1.2 eventservicedevicCe i i it i e e e e e 35

4.2 Event Daemon e e e 36
4.2.1 Event Daemon Configuration Parameters 37
4.2.1.1 eventservicegroupo 37

4.2.1.2 eventservicedevicCet e e e e e e 37

4.3 Event Types. o . e 38
4.3.1 Pathloss Event e e 38
4.3.2 Location Event e e e 38
4.3.3 Comm Effect Event 39
4.3.4 Antenna Direction Event e 39

4.4 Demonstrations e e e e e e e e e 39
4.4.1 Demonstration 3 e e e e 39
4.4.1.1 Demonstration Procedure oo 39

4.4.1.2 Concept Review 41

5 XML Configuration 43
5.1 Layered Configuration e e 43
5.2 Automatic XML Generation 45
5.3 Transport Grouping o e e e 46
5.4 Demonstrations e e e e e e e 47
5.4.1 Demonstration 4 e e e e 48
5.4.1.1 Demonstration Procedure 48

54.1.2 Concept Review e 49

5.4.2 Demonstration 5 e e e 49
5.4.2.1 Demonstration Procedure e 49

5.4.2.2 Concept Review 50

6 Deployment Debugging 51
6.1 NEM Platform Server Debug Port 51
6.2 Logging e e 51
6.3 Demonstrations 52
6.3.1 Demonstration 6 L e e e e e 52
6.3.1.1 Demonstration Procedure o 53

6.3.1.2 Concept Review e 54

6.3.2 Demonstration 7 e e e e e e e 54
6.3.2.1 Demonstration Procedure oo 54

6.3.2.2 Concept Review 55

II Models 57
7 Universal PHY Layer 59
7.1 Model Features 59
7.1.1 Pathloss Calculation e 59
7.1.2 Receive Power Calculation e 59
7.1.3 Directional Sector Antenna Support 60
7.1.4 Noise Processing e 60
7.1.5 MAC-PHY Control Messaging 61

7.2 Configuration Parameters L L e 61
7.2.1 bandwidth L e e e e e e 61

7.2.2 antemnagain 62

CONTENTS

7.2.3 systemnoisefigure L e
7.2.4 frequencyofinterest L Lo
7.2.5 pathlossmode e
7.2.6 mnoiseprocessingmodel
7.2.7 defaultconnectivitymode L L
T.2.8 LXPOWET o . v i i e e e e e
7.2.9 frequency
7.2.10 antennaazimuthbeamwidth
7.2.11 antennaelevationbeamwidth L oo
7.2.12 antennaazimuth L e e
7.2.13 antennaelevation L e
7.2.14 antennatype
T.2.15 subid e e e e e e e e

7.3 Packet Processing Flows e
7.4 Demonstrations L L e e e e e e
7.4.1 Demonstration 8 L e
7.4.1.1 Demonstration Procedureo 0oL

7.4.1.2 Concept Review e

8 RF Pipe MAC Layer

8.1 Model Features e e e e e e e
8.2 Configuration Parameters e
8.2.1 enablepromiscuousmode
8.2.2 enabletighttiming
8.2.3 tramsmissioncontrolmapo
8.2.4 datarate e e e e
8.25 delay e
8.2.6 Jitter
8.2.7 pcrcurveuri e
8.2.8 flowcontrolenable e e e e
8.2.9 flowcontroltokens it ittt e e e e e e e

8.3 Packet Completion Rate e
8.4 Packet Processing Flows e
8.5 Demonstrations L e e e e e e
8.5.1 Demonstration 9 L
8.5.1.1 Demonstration Procedure 0

8.5.1.2 Concept Review e

9 IEEE 802.11abg MAC Layer

9.1 Model Features e e e e e e e e
9.2 Configuration Parameters L e
9.2.1 mode e e e
9.2.2 emnablepromiscuousmodel e e e
9.2.3 distance e e e
9.2.4 unicastrate e e e e e e e e
9.2.5 multicastrate L e
9.2.6 rtsthreshold e e e
9.2.7 wmmenable L L e e e
9.2.8 pcreurveuri Lo
9.2.9 flowcontrolenable e e e
9.2.10 flowcontroltokens o i it e e e e e e
9.2.11 queuesize L e
0.2.12 cwmin e e e e
9.2.13 CWMAX o e e e e e e e e

vii

62
62
62
63
63
63
63
64
64
64
65
65
65
65
67
68
68
69

71
71
72
72
72
72
73
73
73
74
74
74
(0]
76
79
79
79
81

viii CONTENTS
90.2.14 aifs e e e 89

9.2.15 tXOP o 89

9.2.16 retrylimit e 90

9.3 Packet Completion Rate e e e 90
9.4 Packet Processing Flows e 91
9.5 Demonstrations e e e e e 95
9.5.1 Demonstration 10 L L e 95

9.5.1.1 Demonstration Procedure Lo oo 96

9.5.1.2 Concept Review e 96

10 Comm Effect Shim Layer 97
10.1 Model Features L e 97
10.2 Configuration Parameters L 97
10.2.1 defaultconnectivity 97

10.2.2 filterfile o e e e e 98

10.2.3 groupid e 98

10.2.4 enablepromiscuousmodel e 98

10.2.5 enabletighttimingmode o 99

10.2.6 receivebufferperiodo 99

10.3 Static Filters 0 99
10.4 Packet Processing Flows 102
10.5 Demonstrations Lo e e e e e e 104
10.5.1 Demonstration 11 o L e e e e e 104

10.5.1.1 Demonstration Procedure 0o, 104

10.5.1.2 Concept Review oL 106

III Transports 107
11 Virtual Transport 109
11.1 Transport Features 0 e e e e e 109
11.2 Configuration Parameters L 109
11.2.1 address o o o e e e e 109

11.2.2 arpcacheenable 110

11.2.3 arpmode L e 110

11.2.4 bitrate o o o o e e e e e 110

11.2.5 broadcastmode e e e e e e e 111

11.2.6 device e 111

11.2.7 devicepath L 111

11.2.8 flowcontrolenable i L e e e e e 112

11.2.9 mask o o 112

11.3 Flow Control e e 112
11.4 Packet Processing Flows o o 0 0 e e 113
11.5 Demonstrations e e e e e e 115
11.5.1 Demonstration 12 L L e e 115
11.5.1.1 Demonstration Procedure e 115

11.5.1.2 Concept Review o e 116

12 Raw Transport 117
12.1 Configuration Parameters 0 117
12.1.1 bitrate o o 117

12.1.2 broadcastmode e e e e e e e e 117

12.1.3 arpcacheenable 118

12.1.4 device o e e e e 118

CONTENTS

12.2 Transport Interoperability L e

12.3 Packet

Processing Flows o e e

12.4 Demonstrations e e e e

12.4.1

IV Events

Demonstration 13 e e
12.4.1.1 Demonstration Procedure
12.4.1.2 Concept Review e

13 Mitre Mobility Model Event Generator
13.1 Configuration Parameters L e

13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.7
13.1.8
13.1.9

inputfileformato oo o
inputfilecounto oL
totalnodes e e
maxnemidpresent Lo Lo oL
repeatcount e
Utmzone L e e e e e e e e e e e e e
entryreplay e e
publishpathlossevents 0.
publishlocationevents Lo e

13.2 Mitre Mobility Model Format
13.3 Demonstrations L

13.3.1

14 Emulation

Demonstration 14 e e e
13.3.1.1 Demonstration Procedure
13.3.1.2 Concept Review e

Script Event Generator

14.1 Configuration Parameters L e

14.1.1
14.1.2
14.1.3
14.1.4
14.1.5

inputfile
totalnodes L. L e e e e e e e e e e e e e e
repeatcount L e e
schemalocation L e e e e e e
Emulation Script Data Format

14.2 Demonstrations e e e

14.2.1

15 Emulation

Demonstration 15
14.2.1.1 Demonstration Procedure

Event Log Generator

15.1 Configuration Parameters L

15.1.1
15.1.2

inputfile
loader L e e e e e e e e e e e

15.2 Emulation Event Log Format L
15.3 Demonstrations e e e e e e e e e e e e

15.3.1

Demonstration 16 e e e e e e e e
15.3.1.1 Demonstration Procedure
15.3.1.2 Concept Review e

16 Comm Effect Event Generator
16.1 Configuration Parameters o e

16.1.1
16.1.2
16.1.3
16.1.4
16.1.5

inputfile L e
totalnodes L L e e
maxnemidpresent L0 Lo Lo e e e
repeatcount L Lo e e e e e e
entryreplay e e e

ix

118
119
121
121
121
124

125

127
127
127
127
128
128
128
128
129
129
129
129
130
130
130
131

133
133
133
133
133
134
134
135
135
135

137
138
138
138
139
139
139
139
140

16.2
16.3

Comm Effect Impairment Format
Demonstrations e
16.3.1 Demonstration 17

16.3.1.1 Demonstration Procedure

17 Antenna Direction Event Generator

17.1

17.2
17.3

Configuration Parameters
17.1.1 inputfileformat
17.1.2 inputfilecount
17.1.3 totalnodes
17.1.4 repeatcount
Antenna Direction Format
Demonstrations
17.3.1 Demonstration 18

17.3.1.1 Demonstration Procedure

17.3.1.2 Concept Review

18 GPSd Location Agent

18.1

18.2

Configuration Parameters
18.1.1 gpsdcontrolsocket
18.1.2 pseudoterminalfile
18.1.3 gpsdconnectionenabled
Demonstrations Lo oo
18.2.1 Demonstration 19

18.2.1.1 Demonstration Procedure

V Python Bindings

19 Event Service Python Bindings

19.1
19.2
19.3
19.4
19.5
19.6
19.7

Configuration L L
EventService
EventLocation
EventPathloss
EventCommEffect
EventAntennaDirection
Demonstrations L o
19.7.1 Demonstration 20

19.7.1.1 Demonstration Procedure

19.7.1.2 Concept Review

20 EMANE Library Python Bindings

20.1
20.2
20.3
20.4
20.5
20.6
20.7

Configuration L L
Logger o
Event Agent Manager
Transport Manager o
Platform Server Lo
Putting It Together oo
Demonstrations Lo oL Lo
20.7.1 Demonstration 21o

20.7.1.1 Demonstration Procedure

20.7.1.2 Concept Review

CONTENTS

................. 169

Chapter 1

Introduction

The Extendable Mobile Ad-hoc Network Emulator (EMANE) is an open source' framework which provides
wireless network experimenters with a highly flexible modular environment for use during the design, de-
velopment and testing of simple and complex network architectures. EMANE provides a set of well-defined
APIs to allow independent development of network emulation modules, emulation/application boundary
interfaces and emulation environmental data distribution mechanisms.

-—_——— — -—_——— — -r—_——— = -F—_—— == = emaneeventd
Transport Daemon I Transport Daemon | Transport Dasmon I Tra t Daemon I
[Transport | Transport | Transpo | Transport L (optional)
Implementation | Implementation | Implementation I Implementation |
| A] | | ‘ A | l]

I Al
Platform
Elements

|
Log
Service

PHYI

‘ Network Adapter ‘ Network Adapter Network Adapter|

&
I MACI

Event
Service
Al L.'

Platform
Elements

H Weh Server

Event Server

OTA Manager Channel
(Peer Platiorm NEM Servers)

(optional |

Figure 1.1: EMANE component diagram.

1EMANE is released under the BSD license.

2 CHAPTER 1. INTRODUCTION
1.1 Overview

A Network Emulation Module (NEM) is a logical component that encapsulates all of the functionality nec-
essary to emulate a particular type of network technology. Each NEM is composed of plugin instances that
are layered and interconnected to form an emulation stack. There are three types of NEM layers: Medium
Access Control (MAC) Layer, Physical (PHY) Layer, and Shim Layer.

Emulation/application boundary interfaces provide the functionality responsible for transferring data be-
tween the emulation and application domain. The application domain refers to entities running during the
experiment which are not part of EMANE. The application domain includes, but is not limited to, user
space processes, kernel space processes, network appliances or any other device, system, or component that
is not operating on behalf of or as part of EMANE. Emulation/application boundary interfaces are referred
to as transports.

Emulation environmental data, such as pathloss information and GPS location information, are opaquely
distributed in realtime to one or more targeted EMANE plugin components. These emulation data messages
are referred to as events. Events can be generated using either an EMANE framework API or via a library
interface. The EMANE framework provides an API that can be used to develop plugins which generate
events based on experiment scenarios. These plugins are referred to as event generators. Additionally, a C
language library API (libemaneeventservice) is provided to allow development of applications with embedded
event generation capabilities.

Emulation environmental data can traverse the emulation/application boundary using agents that trans-
late emulation domain data into application domain data. These agents are referred to as event agents.
Event agents facilitate the reuse of any experiment scenario information propagated via an event that is
of interest outside of the emulation domain. For example, position information contained in the EMANE
Location Event which is used by some PHY layers to compute pathloss may also be of interest to application
domain entities that require GPS location.

The key to the flexibility of EMANE is the use of application build factories to determine which emu-
lation plugin components to instantiate and where they reside once deployed. Each instantiated plugin
component belongs to a type specific component container. There are four types of component containers
that can be configured to create and manage a variable number of plugin component instances:

e The NEM Platform Server creates and manages network emulation modules.
e The Transport Daemon creates and manages emulation/application boundary interfaces.
e The Fvent Service creates and manages emulation event generators.

e The Fvent Daemon creates and manages event agents that bridge emulation environmental data be-
tween the emulation and application space.

The number of component containers, the amount of plugin components contained in each container, and
the location of those containers is referred to as the EMANE deployment. There are three types of EMANE
deployments: centralized, distributed, and hybrid.

The goal of this manual is to introduce the EMANE framework and each of the components that com-

prise the standard EMANE distribution through a series of hands on demonstrations using the EMANE
Demo Virtual Machine.

1.2 EMANE Demo Virtual Machine

The EMANE Demo Virtual Machine is a 32 bit RPM based Linux VM fully configured with the latest
EMANE release and the latest EMANE User Manual Demonstrations. Any modern Linux installation with

1.2. EMANE DEMO VIRTUAL MACHINE 3

Ixc Linux Container? support running the latest EMANE release will be able to execute the EMANE User
Manual demonstrations.

Each demonstration makes use of Linux Containers to create lightweight virtual nodes. Each container
node is assigned their own Network and PID namespace to provide network stack and process isolation.
Each demonstration configures the containers and the applications running in each container node respec-
tive to the features and mechanisms being demonstrated. Additionally, each container node is running an
SSH server to allow hands on interaction and examination during the demonstration. Each container has
a configured back-channel interface which is used to command and control the container. Figure 1.2 shows
the demonstration node network diagram. In some demonstrations the back-channel interface is also used
as the EMANE Over-The-Air interface and the EMANE Event interface. Table 1.1 lists the demonstration
node back-channel addresses.

Table 1.1: Demonstration node back- Table 1.2: Demonstration node emulation
channel interfaces. boundary interface addresses.
Back Channel Wireless
NEM Id | Host Name | Address NEM Id | Host Name | Address
1 node-1 10.99.0.1 1 radio-1 10.100.0.1
2 node-2 10.99.0.2 2 radio-2 10.100.0.2
3 node-3 10.99.0.3 3 radio-3 10.100.0.3
4 node-4 10.99.0.4 4 radio-4 10.100.0.4
5 node-5 10.99.0.5 5 radio-5 10.100.0.5
6 node-6 10.99.0.6 6 radio-6 10.100.0.6
7 node-7 10.99.0.7 7 radio-7 10.100.0.7
8 node-8 10.99.0.8 8 radio-8 10.100.0.8
9 node-9 10.99.0.9 9 radio-9 10.100.0.9
10 node-10 10.99.0.10 10 radio-10 10.100.0.10

Depending on the transport used by a specific demonstration, the demonstration node interface used as the
emulation/application boundary will differ but the address assigned will remain the same. Demonstrations
using the Virtual Transport will assign addresses on the 10.100.0.0/24 network to emane0. Demonstrations
using the Raw transport will assign the same addresses to ethl. Table 1.2 lists the emulation/application
boundary interface addresses.

node-server

10.99.0.100/24

Back Channel Network: 10.99.0.0/24
) Emulated Network; 10,100.0.0/24
o

bro
etho etho etho etho etho etho etho etho etho etho
i = W 7= i 7= Wi = P ¥ i = P ¥ i = W 7= i 7=

node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10
10.99.0.1/24 10.99.0.2/24 10.89.0.3/24 10.9%.0.4/24 10.89.0.5/24 10.99.0.6/24 10.99.0.7/24 1099.0.8/24 10.99.0.8/24 10.89.0.10/24

10.100.0.1/24 10.100.0.2/24 10.100.0.3/24 10.100.0.4/24 10.100.0.5/24 10.100.0.5/24 10.100.0.7/24 10.100.0.8/24 10.100.0.8/24 10.100.0.10/24

=0

Virtual Transport demonstrations use emane0 for 10.100.0.0/24
Raw Transport demonstrations use ethl fer 10.100.0.0/24

Figure 1.2: Demonstration node network diagram.

2http ://1xc.sourceforge.net

http://lxc.sourceforge.net

4 CHAPTER 1. INTRODUCTION
1.3 EMANE Deployment Diagrams

Each of the EMANE demonstrations found throughout this manual contain EMANE Deployment Diagrams.
These diagrams use a set of icons to convey certain aspects of EMANE deployments. Deployment diagrams
depict NEM Platforms and their contents along with Transport Daemons and their contents. Deployment
diagrams do not convey topology or routing information about the wireless network or networks being
emulated. Figure 1.3 shows the deployment diagram key.

)
Ay

NEM Transport
® T
e
T ®
NEM Platform Server Transport Daemon
(Hosting 1 NEM) (Hosting 1 Transport)
£ ,x"\l I \ ‘r"'\
\) S S)
T \[\[\[_l_ _l_ _l__l_
XXX

Transport Daemon
NEM Platform Server (Hosting 4 Transport)

(Hosting 4 NEM)

Figure 1.3: EMANE Deployment Diagram Key.

Part 1

Emulation Infrastructure

Chapter 2

Infrastructure Basics

Designing an EMANE experiment first starts with selecting the appropriate NEM(s) necessary to accomplish
the experiment objectives. For illustrative proposes, we will be examining a simple four node Bypass NEM
experiment in order to introduce the various aspects of EMANE deployments. The deployment diagrams
show in Figure 2.1 and Figure 2.2 depict a centralized and distributed EMANE deployment, respectively.

Virtual Virtual Virtual Virtual

Virtual - virtual - Virtual = Virtual Transport Transport Transport Transport

Transgort Transgort Transgort Transgort
node-1 node-2 node-3 node-4 ’:\%’;’i node-2 node-3 node-4
NEM1 ~ NEM3 NEM3 NEM4 NEM 3 NEM 3 NEM4
& N Y o N oy PN s
A N N A N y. N N A
|2y |3 | (4> L4243 |4
T 1 [I [1]
& ah & ‘\ Y Y
L} -~ @ L J _._n' (/ L 'C,
| H i i H]
LR — — — — N ~
() ())) () () (. ()
T T T T I T I T
' — —t— —— —t—
NEM 1 NEM 2 MNEM 3 NEM 4 Platform 1 Platform 2 Platform 3 Platform 4
Platform 1 NEM1 NEMZ2 NEM3 NEM4
node-server node-1 node-2 node-3 node-4
Figure 2.1: Four node centralized deployment. Figure 2.2: Four node distributed deployment.

2.1 NEM Platform Server

NEMs are created and managed by an NEM Platform Server. NEMs managed by the same NEM Platform
Server are referred to as being part of the same platform. The determination as to how many NEM platforms
are required to support a given emulation experiment is a function of the number of NEMs, the complexity
of the emulation modules, and the processing and memory resources available.

Inter-NEM communication is manged by the NEM Platform Server. NEMs belonging to the same plat-
form use thread shared memory message passing. NEMs belonging to different platforms communicate
using a multicast channel referred to as the Over-The-Air (OTA) Channel. The EMANE infrastructure
delivers all OTA messages to every NEM participating in the emulation. This provides the opportunity to

7

8 CHAPTER 2. INFRASTRUCTURE BASICS

model more complex PHY phenomena such as RF interference.

NEM Platform Servers instantiate one or more NEMs based on an XML configuration file. The NEM
Platform Server application is named emane and the NEM Platform Server configuration file is referred to
as the Platform XML. Deploying a centralized, distributed, or hybrid EMANE emulation experiment is a
function of the configuration contained within one or more platform XML files. Listing 2.1 shows the man
page entry for the emane application.

A centralized deployment is one in which there is a single NEM Platform Server that instantiates all of
the NEMs contained in the deployment.

A distributed deployment is one in which there are multiple NEM Platform Servers each containing a single
NEM instance. In a distributed deployment the number of NEM Platform Servers equals the number of
NEMs in the deployment.

A hybrid deployment is one in which there are multiple NEM Platform Servers, with at least one con-
taining multiple NEM instances.

emane (1) emane (1)

NAME
emane - EMANE Platform NEM Server

SYNOPSIS
emane [OPTIONS]... CONFIG_URI

DESCRIPTON
emane 1is the Platform NEM server application that creates and manages
one or more NEMs. Each NEM is connected to a transport that facilitates
the opaque packet entry/exit point for the NEM network stack. Communi-
cation between NEMs contained in the same emane platform is done inter-
nal to the platform. Communication between multiple emane platforms is
done using the Over-The-Air (OTA) multicast channel.

CONFIG_URI is the XML containing the Platform NEM Server configuration.

OPTIONS
The following options are supported:

--version
Display version and exit

--loglevel [0,4]
Set the current application log level.
0 - No Logging
1 - Abort Level
2 - Error Level
3 - Stat Level
4 - Debug Level

--logserver DESTINATION:PORT
Enable remote logging and direct all 1logging messages to the
given endpoint.

--realtime
Run with realtime priority and SCHED_RR. Must have superuser
privilege.

--logfile FILE
Log to a file

--daemonize
Run EMANE in the background

--syslog
Log to syslogd

Listing 2.1: emane man page entry.

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35

2.1. NEM PLATFORM SERVER 9
2.1.1 Centralized Deployment Example

The centralized deployment depicted in Figure 2.1 can be instantiated using the platform XML shown in
Listing 2.2. A single NEM Platform Server will instantiate four instances of the NEM defined via the bypass-
nem.zml configuration file. All emulation functionality will be performed by a single server. In this example,
the NEM Platform Server host name is node-server. The four NEMs it will instantiate are highlighted
in yellow. The NEMs are assigned ids 1, 2, 3 and 4, respectively. The platform XML also specifies that
the emulation/application boundaries associated with the four NEMs will be residing on node-1, node-2,
node-3, and node-4, respectively.

<?xml version="1.0" encoding="UTF-8"?7>
<!DOCTYPE platform SYSTEM "file:///usr/share/emane/dtd/platform.dtd">

<platform name="Platform 1" id="1">

<param name="otamanagerchannelenable" value="off"/>

<param name="eventservicegroup" value="224.1.2.8:45703"/>

<param name="eventservicedevice" value="1lo"/>

<nem name="NEM-1" id="1" definition="bypassnem.xml">
<param name="platformendpoint" value="node-server:8201"/>
<param name="transportendpoint" value="node-1:8301"/>
<transport definition="transvirtual.xzml">
<param name="address" value="10.100.0.1"/>
<param name="mask" value="255.255.255.0"/>
</transport>

</nem>

<nem name="NEM-2" id="2" definition="bypassnem.xml">
<param name="platformendpoint" value="node-server:8202"/>
<param name="transportendpoint" value="node-2:8302"/>
<transport definition="transvirtual.xml">
<param name="address" value="10.100.0.2"/>
<param name="mask" value="255.255.255.0"/>
</transport>

</nem>

<nem name="NEM-3" id="3" definition="bypassnem.xml">
<param name="platformendpoint" value="node-server:8203"/>
<param name="transportendpoint" value="node-3:8303"/>
<transport definition="transvirtual.xml">
<param name="address" value="10.100.0.3"/>
<param name="mask" value="255.255.255.0"/>
</transport>

</nem>

<nem name="NEM-4" id="4" definition="bypassnem.xml">
<param name="platformendpoint" value="node-server:8204"/>
<param name="transportendpoint" value="node-4:8304"/>
<transport definition="transvirtual.xml">
<param name="address" value="10.100.0.4"/>
<param name="mask" value="255.255.255.0"/>
</transport>

</nem>

</platform>

Listing 2.2: NEM Platform Server configuration for Figure 2.1.

Since all four NEMs contained in this experiment reside in a single NEM Platform Server there is no need
to enable the OTA Manager Channel. Line 5 of Listing 2.2 disables the OTA Manager Channel by setting
the otamanagerchannelenable parameter to off.

Additionally, for the purposes for this experiment emulation, events will be generated locally on the same
server that is hosting the NEM Platform Server. Lines 6-7 of Listing 2.2 configure the Event Service Channel

© O N ;A W N e

11
12
13
14
15
16
17

10 CHAPTER 2. INFRASTRUCTURE BASICS

and associate the channel with the loopback interface using the eventservicegroup and eventservicedevice
parameters.

2.1.2 Distributed Deployment Example

The distributed deployment depicted in Figure 2.2 can be instantiated using the platform XML show in
Listings 2.3, 2.4, 2.5, and 2.6. Four NEM Platform Servers will each instantiate a single instance of the NEM
defined via the bypassnem.xml configuration file. In this example, node-1, node-2, node-3, and node-4
each host an NEM Platform Server containing a single NEM. Each node also hosts an emulation/application
boundary. Since both the NEM Platform Server and the emulation/application boundary reside on the same
host they can communicate via their respective host’s loopback interface.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE platform SYSTEM "file:///usr/share/emane/dtd/platform.dtd">
<platform name="Platform 1" id="1">

<param name="otamanagerchannelenable" value="on"/>

<param name="otamanagerdevice" value="eth0"/>

<param name="otamanagergroup" value="224.1.2.8:45702"/>

<param name="eventservicegroup" value="224.1.2.8:45703"/>

<param name="eventservicedevice" value="eth0"/>

<nem name="NEM-1" id="1" definition="bypassnem.xml">

<param name="platformendpoint" value="localhost:8201"/>
<param name="transportendpoint" value="localhost:8301"/>
<transport definition="transvirtual.xml">

<param name="address" value="10.100.0.1"/>

<param name="mask" value="255.255.255.0"/>
</transport>
</nem>

</platform>

Listing 2.3: NEM Platform Server 1 configuration for Figure 2.2.

<?7xml version="1.0" encoding="UTF-8"?7>
<!DOCTYPE platform SYSTEM "file:///usr/share/emane/dtd/platform.dtd">
<platform name="Platform 2" id="2">

<param name="otamanagerchannelenable" value="on"/>

<param name="otamanagerdevice" value="eth0"/>

<param name="otamanagergroup" value="224.1.2.8:45702"/>

<param name="eventservicegroup" value="224.1.2.8:45703"/>

<param name="eventservicedevice" value="eth0O"/>

<nem name="NEM-2" id="2" definition="bypassnem.xml">

<param name="platformendpoint" value="localhost:8201"/>
<param name="transportendpoint" value="localhost:8301"/>
<transport definition="transvirtual.xzml">

<param name="address" value="10.100.0.2"/>

<param name="mask" value="255.255.255.0"/>
</transport>
</nem>

</platform>

Listing 2.4: NEM Platform Server 2 configuration for Figure 2.2.

© W N O T A W N R

A S o
® N o ;A W N R O

© 0N OO W N e

e T
w N o ;A W N R O

2.1. NEM PLATFORM SERVER

11

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE platform SYSTEM "file:///usr/share/emane/dtd/platform
<platform name="Platform 3" id="3">
<param name="otamanagerchannelenable" value="on"/>
<param name="otamanagerdevice" value="eth0"/>
<param name="otamanagergroup" value="224.1.2.8:45702"/>
<param name="eventservicegroup" value="224.1.2.8:45703"/>
<param name="eventservicedevice" value="eth0"/>

<nem name="NEM-3" id="3" definition="bypassnem.xml">

<param name="platformendpoint" value="localhost:8201"/>
<param name="transportendpoint" value="localhost:8301"/>
<transport definition="transvirtual.xml">

<param name="address" value="10.100.0.3"/>

<param name="mask" value="255.255.255.0"/>
</transport>
</nem>

</platform>

.dtd">

Listing 2.5: NEM Platform Server 3 configuration for Figure 2.2.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE platform SYSTEM "file:///usr/share/emane/dtd/platform
<platform name="Platform 4" id="4">
<param name="otamanagerchannelenable" value="on"/>
<param name="otamanagerdevice" value="eth0"/>
<param name="otamanagergroup" value="224.1.2.8:45702"/>
<param name="eventservicegroup" value="224.1.2.8:45703"/>
<param name="eventservicedevice" value="eth0"/>

<nem name="NEM-4" id="4" definition="bypassnem.xml">

<param name="platformendpoint" value="localhost:8201"/>
<param name="transportendpoint" value="localhost:8301"/>
<transport definition="transvirtual.xml">

<param name="address" value="10.100.0.4"/>

<param name="mask" value="255.255.255.0"/>
</transport>
</nem>

</platform>

.dtd">

Listing 2.6: NEM Platform Server 4 configuration for Figure 2.2.

The four NEM Platform Servers contained in this experiment use the OTA Manager Channel to communi-
cate. Lines 4-6 of Listings 2.3, 2.4, 2.5, and 2.6 enable and configure the OTA Manager Channel using the

otamanagerchannelenable, otamanagerdevice, and otamanagergroup parameters.

Additionally, since there is more than one NEM Platform Server the Event Service Channel must be associ-
ated with an interface that is routeable between them. Lines 7-8 of Listings 2.3, 2.4, 2.5, and 2.6 configure
the Event Service Channel and associate the channel with the ethO interface using the eventservicegroup

and eventservicedevice parameters.

2.1.3 NEM Platform Server Configuration Parameters

2.1.3.1 otamanagergroup

The Over-The-Air (OTA) Channel mulitcast endpoint used to communicate between multiple NEM Plat-

form Servers in an EMANE deployment.

12 CHAPTER 2. INFRASTRUCTURE BASICS

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="otamanagergroup" value="224.1.2.8:45702">

Parameter value format description:
<IPv4 Multicast Group>:<Port> | <IPv6 Multicast Group>/<Port>

Name Description
IPv4 or IPv6 Multicast Address Over-The-Air Channel multicast group
Port Over-The-Air Channel UDP port

2.1.3.2 otamanagerdevice

The network device to associate with the OTA Manager Channel multicast endpoint. If missing, the kernel
routing table is used to route multicast joins and packet transmissions.

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="otamanagerdevice" value="eth0O"/>

2.1.3.3 otamanagerchannelenable

Enable or disable the OTA Manager Channel. When disabled, there is no inter-NEM Platform Server com-
munication and only NEMs managed locally by a single NEM Platform Server will be able to communicate.

Type: Boolean
Range: [off, on]
Default: on
Count: 1

XML Format: <param name="otamanagerchannelenable" value="on"/>

2.1.3.4 eventservicegroup

The Event Service Channel mulitcast endpoint used to communicate events between EMANE components
in an EMANE deployment.

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="eventservicegroup" value="224.1.2.8:45703">

2.1. NEM PLATFORM SERVER 13

Parameter value format description:
<IPv4 Multicast Group>:<Port> | <IPv6 Multicast Group>/<Port>

Name Description

IPvj or IPv6 Multicast Address Event Service Channel multicast group
Port Event Service Channel UDP port

2.1.3.5 eventservicedevice

The network device to associate with the Event Service Channel multicast endpoint. If missing, the kernel
routing table is used to route multicast joins and packet transmissions.

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="eventservicedevice" value="ethO"/>

2.1.3.6 debugport

NEM Platform Server telnet debug port UDP port.

Type: Unsigned 16 bit Integer
Range: [0, 65535]

Default: 47000

Count: 1

XML Format: <param name="debugport" value="47000"/>

2.1.3.7 debugportenable

Enable or disable the NEM Platform Server telnet debug port.

Type: Boolean
Range: [of£f, on]
Default: off
Count: 1

XML Format: <param name="debugportenable" value="off"/>

2.1.4 Shared Configuration Parameters

The platformendpoint and transportendpoint configuration parameters are shared by both the NEM
Platform Server and the emulation/application boundary. The platformendpoint configuration parame-
ter names the socket address to which the NEM Platform Server’s NEM binds to receive traffic from the
emulation/application boundary instance. The boundary instance sends all traffic to this address. The
transportendpoint configuration parameter names the socket address to which the emulation/application
boundary binds and to which the NEM instance sends all of its traffic. Figure 2.3 illustrates the parameter

14 CHAPTER 2. INFRASTRUCTURE BASICS

relationships. The NEM Platform Server and emulation/application boundary require both parameters and
the values must be the same for both.

Transport Daemon
(Hosting 1 Transport)

Binds to the transportendpoint address
4 Sends to the platfromendpoint address

Binds to the platfromendpoint address
Sends to the transportendpoint address

—

NEM Platform Server
(Hosting 1 NEM)

Figure 2.3: platformendpoint and transportendpoint.

2.1.4.1 platformendpoint

The endpoint that an NEM should bind to in order to receive messages from its respective emulation/appli-
cation boundary. The address an emulation/application boundary instance sends to when communicating
with its respective NEM.

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="platformendpoint" value="node-server:8201"/>

Parameter value format description:
<IPv4 Unicast Address>:<Port> | <IPv6 Unicast Group>/<Port>

Name Description
IPv/j or IPv6 Unicast Address NEM bind address and emulation/boundary send address
Port UDP port

2.1.4.2 transportendpoint

The endpoint that an emulation/application boundary should bind to in order to receive messages from its
respective NEM. The address an NEM instance sends to when communicating with its respective emula-
tion/application boundary instance.

2.2. TRANSPORT DAEMON 15

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="transportendpoint" value="node-1:8301"/>

Parameter value format description:

<IPv4 Unicast Address>:<Port> | <IPv6 Unicast Group>/<Port>

Name Description
IPv/ or IPv6 Unicast Address Emulation/Application boundary bind address and NEM send address
Port UDP port

2.2 Transport Daemon

Emulation/Application boundary components are responsible for transferring data between the emulation
and application domains®. The top of every emulation stack (NEM) is connected to one side of its associated
emulation/application boundary instance. The other side of the emulation/application boundary instance in-
terfaces with the application domain. Data received from the application domain is transmitted opaquely to
the boundary’s respective NEM for OTA message processing. The emulation boundary is the only EMANE
component aware of the exact format of the application domain data. Along with the opaque data, the
boundary component supplies the destination address, either a unicast or broadcast NEM identifier, to the
NEM stack. This decoupling of application domain data knowledge from the emulation functionality allows
NEMs to be used in conjunction with various types of networks, for example, IP and non-IP based networks.
EMANE boundary components may or may not be designed to inter-operate with other dissimilar boundary
components in the same experiment.

Emulation/Application boundary components are created and managed by a Transport Daemon. Bound-
aries managed by the same Transport Daemon are referred to as being part of that Transport Daemon.
The Transport Daemon can instantiate one or more emulation/application boundaries based on an XML
configuration file. The Transport Daemon application is named emanetransportd and the Transport Dae-
mon configuration file is referred to as the Transport Daemon XML. There is nothing explicitly related to
centralized, distributed, or hybrid EMANE deployments in the Transport Daemon XML. Listing 2.7 shows
the man page entry for the emanetransportd application.

emanetransportd (1) emanetransportd (1)
NAME
emanetransportd - EMANE virtual interface transport
SYNOPSIS
emanetransportd [OPTIONS]... CONFIG_URI
DESCRIPTON
The emanetransportd application, also referred to as the Transport

Server, creates and manages one or more transports. Each transport is
connected to a respective NEM and is responsible for creating the net-
work application entry/exit point into/out of its respective NEM stack.

CONFIG_URI is the XML containing the transport daemon configuration.

OPTIONS

3The application domain refers to entities running during the experiment which are not part of EMANE. The application
domain includes, but is not limited to, user space processes, kernel space processes, network appliances or any other device,
system, or component that is not operating on behalf of or as part of EMANE.

© W N O O W N

BoR e
N B O

16 CHAPTER 2. INFRASTRUCTURE BASICS

The following options are supported:
--help Display usage and exit

--version
Display version and exit

--loglevel [0,4]
Set the current application log level.
0 - No Logging
1 - Abort Level
2 - Error Level
3 - Stat Level
4 - Debug Level

--realtime
Run with realtime priority and SCHED_RR. Must have superuser
privledge.

--logserver DESTINATION:PORT
Enable remote logging and direct all logging messages to the
given endpoint.

--logfile FILE
Log to a file

--daemonize
Run EMANE in the background

--syslog
Log to syslogd

Listing 2.7: emanetransportd man page entry.

Chapter 11 Virtual Transport on page 109 will describe the Virtual Transport in depth, however, a basic un-
derstanding of this emulation/application boundary is necessary in order to proceed. The Virtual Transport
creates a virtual interface on the host machine that is used to route traffic into and out of the emulation
domain. In both the centralized and distributed example, node-1, node-2, node-3 and node-4 will each
have a virtual interface named emaneO that will be assigned the addresses 10.100.0.1/24, 10.100.0.2/24,
10.100.0.3/24 and 10.100.0.4/24, respectively.

The only difference between the Transport Daemon XML generated from Listing 2.2 and the XML gen-
erated from Listings 2.3, 2.4, 2.5, and 2.6, are the platformendpoint and transportendpoint parameter
values.

2.2.1 Centralized Deployment Example

Listing 2.8, 2.9, 2.10, and 2.11 show the Transport Daemon XML generated automatically from the NEM
Platform Server XML shown in Listing 2.2. Automatic XML configuration generation is described in Sec-
tion 5.2 Automatic XML Generation on page 45.

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE transportdaemon SYSTEM "file:///usr/share/emane/dtd/transportdaemon.dtd">
<transportdaemon>
<instance nemid="1">
<param name="transportendpoint" value="node-1:8301"/>
<param name="platformendpoint" value="node-server:8201"/>
<transport definition="transvirtual.xzml">
<param name="address" value="10.100.0.1"/>
<param name="mask" value="255.255.255.0"/>
</transport>
</instance>
</transportdaemon>

Listing 2.8: Transport Daemon 1 XML for NEM 1 from centralized NEM Platform Server XML Listing 2.2.

© W N O G W N e

BoR e
N B O

© 0N O G W N R

R e
N RO

© W N O O W N e

BoR e
N B O

© W N O O W N e

BoR e
N B O

2.2. TRANSPORT DAEMON 17

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE transportdaemon SYSTEM "file:///usr/share/emane/dtd/transportdaemon.dtd">
<transportdaemon>
<instance nemid="2">
<param name="transportendpoint" value="node-2:8302"/>
<param name="platformendpoint" value="node-server:8202"/>
<transport definition="transvirtual.xzml">
<param name="address" value="10.100.0.2"/>
<param name="mask" value="255.255.255.0"/>
</transport>
</instance>
</transportdaemon>

Listing 2.9: Transport Daemon 2 XML for NEM 2 from centralized NEM Platform Server XML Listing 2.2.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE transportdaemon SYSTEM "file:///usr/share/emane/dtd/transportdaemon.dtd">
<transportdaemon>
<instance nemid="3">
<param name="transportendpoint" value="node-3:8303"/>
<param name="platformendpoint" value="node-server:8203"/>
<transport definition="transvirtual.xml">
<param name="address" value="10.100.0.3"/>
<param name="mask" value="255.255.255.0"/>
</transport>
</instance>
</transportdaemon>

Listing 2.10: Transport Daemon 3 XML for NEM 3 from centralized NEM Platform Server XML Listing 2.2.

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE transportdaemon SYSTEM "file:///usr/share/emane/dtd/transportdaemon.dtd">
<transportdaemon>
<instance nemid="4">
<param name="transportendpoint" value="node-4:8304"/>
<param name="platformendpoint" value="node-server:8204"/>
<transport definition="transvirtual.xml">
<param name="address" value="10.100.0.4"/>
<param name="mask" value="255.255.256.0"/>
</transport>
</instance>
</transportdaemon>

Listing 2.11: Transport Daemon 4 XML for NEM 4 from centralized NEM Platform Server XML Listing 2.2.

2.2.2 Distributed Deployment Example

Listing 2.12, 2.13, 2.14, and 2.15 show the Transport Daemon XML generated automatically from the NEM
Platform Server XML shown in Listing 2.3, 2.4, 2.5, and 2.6, respectively.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE transportdaemon SYSTEM "file:///usr/share/emane/dtd/transportdaemon.dtd">
<transportdaemon>
<instance nemid="1">
<param name="transportendpoint" value="localhost:8301"/>
<param name="platformendpoint" value="localhost:8201"/>
<transport definition="transvirtual.xml">
<param name="address" value="10.100.0.1"/>
<param name="mask" value="255.255.255.0"/>
</transport>
</instance>
</transportdaemon>

Listing 2.12: Transport Daemon 1 XML for NEM 1 from distributed NEM Platform Server XML Listing 2.3.

© 0N O G W N R

e
N R O

© O N O ;AW N R

BoR e
[SITES)

© O N O ;W N R

o e
[CITRS)

18 CHAPTER 2. INFRASTRUCTURE BASICS

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE transportdaemon SYSTEM "file:///usr/share/emane/dtd/transportdaemon.dtd">
<transportdaemon>
<instance nemid="2">
<param name="transportendpoint" value="localhost:8301"/>
<param name="platformendpoint" value="localhost:8201"/>
<transport definition="transvirtual.xml">
<param name="address" value="10.100.0.2"/>
<param name="mask" value="255.255.255.0"/>
</transport>
</instance>
</transportdaemon>

Listing 2.13: Transport Daemon 2 XML for NEM 2 from distributed NEM Platform Server XML Listing 2.4.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE transportdaemon SYSTEM "file:///usr/share/emane/dtd/transportdaemon.dtd">
<transportdaemon>
<instance nemid="3">
<param name="transportendpoint" value="localhost:8301"/>

<param name="platformendpoint" value="localhost:8201"/>
<transport definition="transvirtual.xml">
<param name="address" value="10.100.0.3"/>
<param name="mask" value="255.255.255.0"/>
</transport>
</instance>
</transportdaemon>

Listing 2.14: Transport Daemon 3 XML for NEM 3 from distributed NEM Platform Server XML Listing 2.5.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE transportdaemon SYSTEM "file:///usr/share/emane/dtd/transportdaemon.dtd">
<transportdaemon>
<instance nemid="4">
<param name="transportendpoint" value="localhost:8301"/>

<param name="platformendpoint" value="localhost:8201"/>
<transport definition="transvirtual.xml">
<param name="address" value="10.100.0.4"/>
<param name="mask" value="255.255.255.0"/>
</transport>
</instance>
</transportdaemon>

Listing 2.15: Transport Daemon 4 XML for NEM 4 from distributed NEM Platform Server XML Listing 2.6.

2.3 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

2.3.1 Demonstration 1

This demonstration deploys a four node centralized Bypass NEM emulation experiment illustrated in Fig-
ure 2.4. The goal of this demonstration is to become familiar with the basic EMANE components in a
centralized deployment.

2.3. DEMONSTRATIONS

Virtual Virtual Virtual Virtual

Transport Transport Transport Transport
node-1 node-2 node-3 node-4
NEM 1 NEM 3 NEM 3 NEM 4

o\ @| | 6| |l@®
] | [
& [))
o k. _/

i

LLL.

!
NEM 1 NEM 2 | NEM3 NEM 4

Platform 1
node-server

Figure 2.4: Demonstration 1 - Four node centralized Bypass NEM deployment.

2.3.1.1 Demonstration Procedure

1. Review the Demonstration 1 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/1
[emane@emanedemo 1] less platform.xml

2. Deploy the demonstration.

[emane@emanedemo 1]$ sudo ./lxc-demo-start.sh

19

3. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

4. Connect to virtual node-1.

[emane@emanedemo 1]$ ssh node-1

5. Review the running processes.

[emane
PID

17
6 7
13 7
16 7
17 7

19
20
80

@node-1 ~]$ ps ax

TTY STAT TIME
? S+ 0:00
? S1 0:00
? Ssl 0:00
? Ss 0:00
? S 0:00
? S 0:00
pts/0 Ss 0:00
pts/0 R+ 0:00

COMMAND

/usr/lib/lxc/lxc-init -- /tmp/lxc-node/1/1/init.sh -s 11:29:
emanetransportd -r -d /home/emane/demonstration/1/transportdaem
/usr/local/bin/olsrd -f /home/emane/demonstration/1/olsrd.conf
/usr/sbin/sshd -o PidFile=/tmp/lxc-node/1/1/run/sshd.pid

sshd: emane [priv]

sshd: emane@pts/0

-bash

ps ax

6. Review node-1’s network interface configuration.

[emane
bmfO

emane0

@node-1 “]$ ifconfig

Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

inet addr:10.100.

0.1 P-t-P:10.100.0.1 Mask:255.255.255.255

UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Link encap:Ethernet HWaddr 02:02:00:00:00:01

inet addr:10.100.
inet6 addr: fe80:

0.1 Bcast:10.100.0.255 Mask:255.255.255.0
:2:ff:£e00:1/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:62 errors:0 dropped:0 overruns:0 frame:0

20 CHAPTER 2. INFRASTRUCTURE BASICS

TX packets:21 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:5284 (5.1 KiB) TX bytes:1794 (1.7 KiB)

ethO Link encap:Ethernet HWaddr 02:01:00:00:00:01
inet addr:10.99.0.1 Bcast:10.99.0.2556 Mask:255.255.255.0
inet6 addr: fe80::1:ff:fe00:1/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:186 errors:0 dropped:0 overruns:0 frame:0
TX packets:129 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:21057 (20.5 KiB) TX bytes:18923 (18.4 KiB)

7. Review node-1’s routing table.

[emane@node-1 ~]$ route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.99.0.0 0.0.0.0 2565.2565.255.0 U 0 0 0 ethO

10.100.0.0 0.0.0.0 255.255.255.0 U 0 0 0 emane0
10.100.0.2 0.0.0.0 255.255.255.255 UH 1 0 0 emaneO
10.100.0.3 0.0.0.0 255.255.255.255 UH 1 0 0 emaneO
10.100.0.4 0.0.0.0 255.255.255.255 UH 1 0 0 emane0
224.0.0.0 0.0.0.0 240.0.0.0 U 0 0 0 bmf0

8. Ping another radio using the radio-NEMID host naming convention.

[emane@node-1 ~1$ ping -c 5 radio-2

PING radio-2 (10.100.0.2) 56(84) bytes of data.

64 bytes from radio-2 (10.100.0.2): icmp_req=1 ttl=64 time=0.745 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=2 ttl=64 time=2.64 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=3 ttl=64 time=3.94 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=4 ttl=64 time=1.69 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=5 ttl=64 time=3.32 ms

--- radio-2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4008ms

rtt min/avg/max/mdev = 0.745/2.471/3.946/1.141 ms

9. Disconnect from node-1.

[emane@node-1 ~]$ exit
logout
Connection to node-1 closed.

10. Stop the demonstration.

[emane@emanedemo 1]$ sudo ./lxc-demo-stop.sh

2.3.1.2 Concept Review

1. What are the EMANE components associated with this deployment type?
Why was the OTA Manager Channel disabled for this demonstration?
What can be deduced from setting the Event Service device to 1o?

What are the implications of not specifying the Event Service device?

oL N

Redeploy the demonstration and shutdown the NEM Platform Server. What happens when you ping
another radio? Why?

[emane@emanedemo 1]$ sudo ./lxc-demo-start.sh
[emane@emanedemo 1]$ sudo killall -QUIT emane
[emane@emanedemo 1]$ ssh node-1

[emane@node-1 ~]1$ ping -c 5 radio-2

2.3. DEMONSTRATIONS 21

2.3.2 Demonstration 2

This demonstration deploys a four node distributed Bypass NEM emulation experiment illustrated in Fig-
ure 2.5. The goal of this demonstration is to become familiar with the basic EMANE components in a
distributed deployment.

Virtual Virtual Virtual Virtual
Transgort Transport Transgort Transport
node-1 node-2 node-3 node-4
NEM 1 NEM 3 NEM 3 NEM 4

@@ ® @

/

HE AR
—— —— — ——

Platform 1 Platform 2 Platform 3 Platform 4
NEM 1 NEM 2 NEM 3 NEM 4
node-1 node-2 node-3 node-4

Figure 2.5: Demonstration 2 - Four node distributed Bypass NEM deployment.

2.3.2.1 Demonstration Procedure

1. Review the Demonstration 2 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/2
[emane@emanedemo 2] less platformil.xml
[emane@emanedemo 2] less platform2.xml
[emane@emanedemo 2] less platform3.xml
[emane@emanedemo 2] less platformé4.xml

2. Deploy the demonstration.

[emane@emanedemo 2]$ sudo ./lxc-demo-start.sh

3. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

4. Connect to virtual node-1.
[emane@emanedemo 2]$ ssh node-1

5. Review the running processes.

[emane@node-1 ~]$ ps ax

PID TTY STAT TIME COMMAND
17 S+ 0:00 /usr/lib/lxc/lxc-init -- /tmp/lxc-node/2/1/init.sh -s 14:11:
? S1 0:00 emanetransportd -r -d /home/emane/demonstration/2/transportdaem
1 7 s1 0:00 emane /home/emane/demonstration/2/platformi.xml -r -d -1 2 -f /
24 7 Ssl 0:00 /usr/local/bin/olsrd -f /home/emane/demonstration/2/olsrd.conf
27 7 Ss 0:00 /usr/sbin/sshd -o PidFile=/tmp/lxc-node/2/1/run/sshd.pid
28 7 S 0:00 sshd: emane [priv]
30 ? S 0:00 sshd: emane@pts/O
31 pts/0 Ss 0:00 -bash
91 pts/0 R+ 0:00 ps ax

6. Review node-1’s network interface configuration.

22 CHAPTER 2. INFRASTRUCTURE BASICS

[emane@node-1 ~1$ ifconfig
bmf0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
inet addr:10.100.0.1 P-t-P:10.100.0.1 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

emaneO Link encap:Ethernet HWaddr 02:02:00:00:00:01
inet addr:10.100.0.1 Bcast:10.100.0.255 Mask:255.255.255.0
inet6 addr: fe80::2:ff:fe00:1/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:62 errors:0 dropped:0 overruns:0 frame:0
TX packets:21 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:5284 (5.1 KiB) TX bytes:1794 (1.7 KiB)

ethO Link encap:Ethernet HWaddr 02:01:00:00:00:01
inet addr:10.99.0.1 Bcast:10.99.0.2556 Mask:255.255.255.0
inet6 addr: fe80::1:ff:fe00:1/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:186 errors:0 dropped:0 overruns:0 frame:0
TX packets:129 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:21057 (20.5 KiB) TX bytes:18923 (18.4 KiB)

7. Review node-1’s routing table.

[emane@node-1 ~]$ route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.99.0.0 0.0.0.0 2565.2556.255.0 U 0 0 0 ethO

10.100.0.0 0.0.0.0 2565.2556.255.0 U 0 0 0 emane0
10.100.0.2 0.0.0.0 255.255.255.255 UH 1 0 0 emane0
10.100.0.3 0.0.0.0 255.255.255.255 UH 1 0 0 emane0
10.100.0.4 0.0.0.0 255.255.255.255 UH 1 0 0 emane0
224.0.0.0 0.0.0.0 240.0.0.0 Y 0 0 0 bmfO

8. Ping another radio using the radio-NEMID host naming convention.

[emane@node-1 ~]$ ping -c 5 radio-2

PING radio-2 (10.100.0.2) 56(84) bytes of data.

64 bytes from radio-2 (10.100.0.2): icmp_req=1 ttl=64 time=2.62 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=2 ttl=64 time=3.88 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=3 ttl=64 time=4.91 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=4 ttl=64 time=4.87 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=5 ttl=64 time=1.61 ms

--- radio-2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4020ms

rtt min/avg/max/mdev = 1.610/3.582/4.916/1.293 ms

9. Disconnect from node-1.
[emane@node-1 ~]$ exit

logout
Connection to node-1 closed.

10. Stop the demonstration.

[emane@emanedemo 2]$ sudo ./lxc-demo-stop.sh

2.3.2.2 Concept Review

1. What are the EMANE components associated with this deployment type?

2.3. DEMONSTRATIONS 23

2. Why was the OTA Manager Channel enabled for this demonstration?
3. Why was the Event Service device set to eth0?
4. What are the implications of not specifying the OTA Manager Channel device?

5. When is it possible to use localhost for the platformendpoint and transportendpoint parameters?

24

CHAPTER 2. INFRASTRUCTURE BASICS

© 0 NG W N e

oA W N e

Chapter 3

Network Emulation Modules

A Network Emulation Module (NEM) is a logical component that encapsulates all the functionality neces-
sary to emulate a particular type of network technology. EMANE supports two types of Network Emulation
Modules: structured and unstructured.

A structured NEM is a component stack composed of a Physical (PHY) Layer implementation, a Medium
Access Control (MAC) Layer implementation and zero or more Shim Layer implementations. Listing 3.1
shows the structured NEM definition of an IEEE 802.11abg NEM.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE nem SYSTEM "file:///usr/local/share/emane/dtd/nem.dtd">
<nem name="IEEE 802.11 NEM">

<mac definition="ieee8021labgmac.xml"/>

<phy definition="universalphy.xml">

<param name="subid" value="1"/>

</phy>

<transport definition="transvirtual.xml"/>
</nem>

Listing 3.1: Structured IEEE 802.11abg NEM definition.

An unstructured NEM is a component stack composed of zero or one PHY Layer implementation, zero or
one MAC Layer implementation and zero or more Shim Layer implementations. Listing 3.2 shows the un-
structured NEM definition of a Comm Effect NEM. From an instantiation point of view, the main difference
between the two NEM Layer types, besides the number of layers, is that internal NEM definition verification
checks are relaxed when unstructured NEMs are built.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE nem SYSTEM "file:///usr/share/emane/dtd/nem.dtd">
<nem name="COMMEFFECT NEM" type="unstructured">
<shim definition="commeffectshim.xml"/>
<transport definition="transraw.xml"/>
</nem>

Listing 3.2: Unstructured CommEffect NEM definition.

Once instantiated, NEM component layers are configured and then connected to the layer immediately above
and below. NEM layers communicate with each other using a generic message passing interface. Each layer
is capable of communicating cross-layer control messages and OTA messages with their neighboring layers
(See Figure 3.1). Examples of cross-layer messages include: per packet RSSI, carrier sense, and transmission
control messages. Each layer has the capability to generate OTA messages for communication with their
respective layer counterparts contained in different NEMs. Layers may also append and strip layer specific

25

N o o s W N e

26 CHAPTER 3. NETWORK EMULATION MODULES

headers to OTA messages.

Ethernet Frame Ethernet Frame

Actual
Data Flow

4
" Logicall L’

\

.
Logical

OTA Daia | ‘! ross-Layer

NEM v

-Layer

OTA Data o

OTA | om L | OTA

Figure 3.1: NEM Stack with Boundary and OTA connections (Left). NEM Stack showing physical and logical communication
paths (Right).

The term upstream is used in EMANE to describe the path from OTA transmission up the NEM Layer stack
to the application domain. The term downstream is used to describe the path from the application domain
down the NEM Layer stack towards OTA transmission.

3.1 Defining an NEM

The Bypass NEM used in both the centralized and distributed emulation experiments presented in Chap-
ter 2 Infrastructure Basics on page 7 is composed of two EMANE components: Bypass MAC Layer and
Bypass PHY Layer.

An NEM component layer composition is defined using an XML configuration file. Listing 3.3 shows the
Bypass NEM definition. An NEM layer stack is represented using <mac>, <phy>, <shim> and <transport>
XML elements. Each element has a mandatory definition attribute which references the XML configura-
tion associated with the respective component layer.

All NEM definitions are subject to the following rules which are enforced by the EMANE NEM DTD:

1. The order in which child elements are listed within the <nem> definition block corresponds to the order
the plugin layers will be connected once instantiated, with the exception of the <transport> element.

2. The first child element in the <nem> definition block is the most upstream non-transport layer.

3. The <transport> element must be the last child element in the <nem> definition block.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE nem SYSTEM "file:///usr/share/emane/dtd/nem.dtd">
<nem name="BYPASS NEM">
<mac definition="bypassmac.xml"/>
<phy definition="bypassphy.xml"/>
<transport definition="transvirtual.xml"/>
</nem>

Listing 3.3: Bypass NEM XML configuration.

N R

w

~N oo W N R

3.2. PHYSICAL LAYER 27

Line 4 of Listing 3.3 specifies the use of the MAC Layer defined in the bypassmac.zml file (See Listing 3.4).
Line 5 specifies the use of the PHY Layer defined in the bypassphy.zml file (See Listing 3.5). Line 6 specifies
the use of the transport defined in the transvirtual.zml file (See Listing 3.6).

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE mac SYSTEM "file:///usr/share/emane/dtd/mac.dtd">
<mac name="bypassmac" library="bypassmaclayer"/>

Listing 3.4: Bypass MAC XML configuration.

Line 3 of Listing 3.4 specifies the name of the MAC Layer, bypassmac and the name of the plugin to instan-
tiate, bypassmaclayer. In Linux and OS X the plugin name corresponds to a dynamic-link library named
libbypassmac.so. In Win32 the plugin name corresponds to a dynamic-link library named libbypassmac.dll.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE phy SYSTEM "file:///usr/share/emane/dtd/phy.dtd">
<phy name="bypassphy" library="bypassphylayer"/>

Listing 3.5: Bypass PHY XML configuration.

Line 3 of Listing 3.5 specifies the name of the PHY Layer, bypassphy and the name of the plugin to instan-
tiate, bypassphylayer. In Linux and OS X the plugin name corresponds to a dynamic-link library named
libbypassphy.so. In Win32 the plugin name corresponds to a dynamic-link library named libbypassphy.dll.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE transport SYSTEM "file:///usr/share/emane/dtd/transport.dtd">
<transport name="Tap transport" library="transvirtual">
<param name="bitrate" value="0.0"/>
<param name="devicepath" value="/dev/net/tun"/>
<param name="device" value="emaneO"/>
</transport>

Listing 3.6: Virtual Transport XML configuration.

Line 3 of Listing 3.6 specifies the name of the emulation/application boundary, Tap transport and the name
of the plugin to instantiate, transvirtual. In Linux and OS X the plugin name corresponds to a dynamic-link
library named libtransvirtual.so. In Win32 the plugin name corresponds to a dynamic-link library named
libtransvirtual.dll.

3.2 Physical Layer

The primary function of the Physical Layer component within a wireless network emulation environment is
to accurately account for the key set of factors that impact the reception of data. In its simplest form, data
reception within the PHY is based on the Signal to Interference plus Noise Ratio (SINR) at the receiving
node. For most waveforms, slight variations in SINR (less than 1dB) can impact the receiver’s ability to
receive data as seen in Figure 3.2. These key factors for the PHY layer can be placed in two categories: 1)
factors that impact the receive signal and 2) factors that impact the interference and noise.

Key factors impacting receive signal are associated with signal propagation and antenna modeling. Signal
propagation models can be complex depending on many variables such as channel type (air-to-air, air-to-
ground, ground-to-ground), environment (urban, rural, foliage, blockage), atmosphere, refraction, etc. As
such, high fidelity modeling of such effects is typically performed offline or using dedicated computing re-
sources and provided in realtime during emulation. Antenna effects such as pointing, gain patterns and
platform motion (yaw/pitch/roll) can also drastically alter the received signal. The ability to account for

CHAPTER 3. NETWORK EMULATION MODULES

100
L
\
~
.,

B 1 Mbps

B 11 Mbps

&0
|

Frobability of Reception
40

-5 0

Signal Interference/Noise Ratio

Figure 3.2: TEEE 802.11 B Mode Packet Completion Rate.

things such as inaccuracies in directional antenna pointing or an aircraft rolling during a turn is critical for

accurate signal estimation.

The Noise and Interference piece of the SINR has two basic components: 1) receiver sensitivity and 2)
interference from both intentional and unintentional RF emitters. Receiver sensitivity is defined as the min-
imum input power at the receiver for (possible) successful data reception or the noise floor of the receiver
when there is no other interference. Any received signal with power less than the receiver sensitivity would
not be detected at the receiver. Receiver sensitivity is based on thermal noise power (dBm) and the Noise

Figure (dB) associated with the receiver. Thermal noise power, approximated as
—174 4 10log(bandWidth)
is a function of the receiver bandwidth as indicated in Table 3.1. The Noise Figure defines any additional

degradation of the signal caused by components within the RF signal chain of the receiver and as such will
reduce the receiver sensitivity. Typical radio receivers will have a Noise Figure of 4 to 6 dB.

Table 3.1: Thermal Noise as a function of receiver bandwidth.

Description

Thermal Noise Power

Bandwidth
1 MHz -114 dBm Bluetooth channel
2 MHz -111 dBm Commercial GPS channel
6 MHz -106 dBm Analog television channel
20 MHz -101 dBm WLAN 802.11 channel
40 MHz -98 dBm WLAN 802.11 40 MHz channel
1 GHz -84 dBm UWB channel

3.3. MEDIUM ACCESS CONTROL LAYER 29

Interference is defined as any additional RF energy within the RF spectrum of the receiver and can raise
the over all Noise Floor. The impact of RF interference from either intentional or unintentional (fratricide)
sources can be significant compared to effects on propagation from phenomena such as ducting, weather,
foliage, and others. As networks/systems become more complex and RF resources remain scarce, RF inter-
ference is a common occurrence rather than an anomaly and as such needs to be accounted for within the
emulation environment to properly assess overall network performance.

3.2.1 Supporting Heterogeneous Waveforms

In order to support experimentation using heterogeneous NEMs (waveforms), a common PHY Layer header
is used to communicate the information necessary to model complex RF phenomena such as RF interference.
The EMANE Common PHY Header is a mandatory PHY Layer model header. This header allows different
physical layer models to process the potential spectrum impact of packets generated by other waveforms. A
PHY Layer, just like all NEM Layers, is not limited on the number of headers it can add to a downstream
packet, however the plugin API mandates the presence of the Common PHY Layer header for all OTA
packets.
The Common PHY Layer Header contains the following information:

e The Registration Id of the PHY Layer Model

e The transmit power in dBm of the transmitter

e The antenna gain in dBi of the transmitter

e The timestamp of the transmitted packet

e The duration of the transmitted packet

e The center frequency in KHz

e The bandwidth in KHz

e The packet sequence number

The Common PHY Layer header also supports optional antenna pointing information:

e The transmitter antenna type

The transmitter antenna azimuth beam width in degrees

e The transmitter antenna elevation beam width in degrees

The transmitter antenna azimuth in degrees

The transmitter antenna elevation in degrees

The standard EMANE distribution supplies a universal PHY Layer that is used by all the standard models.
See Chapter 7 Universal PHY Layer on page 59 for more details.

3.3 Medium Access Control Layer

Packet mode channel access schemes, also commonly referred to as Medium Access Protocol (MAC), for
wireless communications have significant impact on network performance associated with scale, throughput,
and latency. The MAC protocol defines the mechanisms used to control access to a wireless medium shared
by multiple nodes and can also include other controls (queuing, acknowledgments, retries, fragmentation,
segmentation, etc.) in support of quality of service (QoS) requirements. Unlike the PHY, the MAC must be

30 CHAPTER 3. NETWORK EMULATION MODULES

specifically designed/tailored for a given wireless technology. For example, the channel access protocol (pri-
mary function of the MAC) can vary from very simple, such as static Time Division Multiple Access (TDMA)
where nodes are statically assigned one or more time slots for transmissions, to very complex, such as a hy-
brid protocol that dynamically leverages the benefits of contention based access via Carrier Sense Multiple
Access/Collision Avoidance (CSMA/CA) in conjunction with contention free dynamic TDMA reservations
on top of advanced channelization techniques using Frequency Division Multiple Access (FDMA) or Code
Division Multiple Access (CDMA).

There are significant challenges associated with accurately modeling certain channel access schemes within
the framework of a realtime emulation environment. One of the major challenges associated with accurate
realtime emulation of MAC protocols is timing. To highlight this, we examine CSMA/CA, a contention
based access protocol which is utilized in both commercial and tactical products. CSMA/CA utilizes two
basic principles: carrier sensing and collision avoidance. Here we look a little deeper into the timing asso-
ciated with collision avoidance for 802.11. In 802.11, collisions are minimized by requiring all nodes with a
packet for transmit to select a random slot within a given contention window once the channel becomes idle.
The size of a slot is on the order of tens of microseconds, sufficiently long enough in real systems to ensure
multiple nodes selecting different slots will not step on one another. Within an emulated system, however,
the time it takes for a packet to get from one emulated node to another can be significantly larger than the
contention delay implying that actual implementation of the protocol will not provide an accurate represen-
tation of the collision and back-off phenomena associated with CSMA/CA. Advanced statistical models or
simplistic approximations can be utilized to account for such a phenomena, but the determination of which
model is appropriate should be based on the research/test objective.

3.4 Shim Layer

Sometimes it is useful or necessary to monitor or modify the communication between contiguous layers of
an NEM. This can be achieved by creating and inserting a Shim Layer between the layers of interest. A
Shim Layer allows interaction with the OTA and cross-layer messaging exchanged between contiguous layers
without requiring modifications to those layers. Shims may generate their own OTA messages for communi-
cation with their respective Shim Layer contained in a different NEM and can append and strip layer specific
headers to OTA messages.

Data ontrol

\
\
\
\
|

Transport

o
&
[}
o
2
ES

\
\
! \

Logical
| MEE | e Connections
|| pat nmn\‘ patdl fonr %

9
\ PHY imf1
5
‘ Dala‘ ;:untrul
OTA himy2
1
N

Logical
Connection

.
I
|
|
I
|
I
|
|
|
|
I
|
|

J
o
ol
\
L

\
\
|
\
pataf Jeorirol
YV |
\
|
|
\

o
Y
5
o
Iy
by
&
dl

o
3
>
(e}
=
>

Figure 3.3: NEM Layer stack as it appears without Shims and with three Shims inserted. Two Shims reside between the
MAC and PHY layers and one Shim resides between the PHY Layer and the OTA message interface.

It is possible to insert one or more Shims between the layers of a NEM stack or at the top and bottom
of a layer stack. A Shim plugin implements the same generic interface as a MAC and PHY plugin. This

3.4. SHIM LAYER 31

generic interface allows Shims to be inserted between components without requiring those components to
have knowledge of their presence. Figure 3.3 shows what an NEM layer stack looks like after inserting Shim
Layers and the resulting physical and logical connections. Listing 3.7 shows an IEEE 802.11 NEM definition
with a Timing Analysis Shim inserted between the MAC and PHY Layers.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE nem SYSTEM "http://configserver/dtd/nem.dtd">
<nem name="IEEE 802.11 NEM">
<mac definition="ieee8021labgmac.xml"/>
<shim definition="timinganalysisshim.xml"/>
<phy definition="universalphy.xml"/>
<transport definition="transvirtual.xml"/>
</nem>

Listing 3.7: TEEE 802.11abg NEM definition with a Timing Analysis Shim.

32

CHAPTER 3. NETWORK EMULATION MODULES

Chapter 4

Events

An emulation event is an opaquely distributed message which is delivered in realtime to one or more targeted
EMANE components. Every EMANE component is capable of transmitting and receiving events.

4.1 Event Service

EMANE components which create events based on experiment scenarios are called Event Generators. Event
Generators are instantiated and managed by the EMANE Event Service, which provides the interface used
to publish events.

The Event Service instantiates one or more Event Generators based on an XML configuration file. The
Event Service application is named emaneeventservice and the Event Service configuration file is referred
to as the Fvent Service XML. The Event Service also requires a deployment configuration file. This file is
referred to as the Deployment XML and details the contents of the NEM Platform Servers involved in the
emulation experiment. Listing 4.1 shows a sample Event Service XML configuration. Listing 4.2 shows the
deployment file resulting from the emulation experiment described in Section 2.1.2 on page 10. Listing 4.3
shows the manual entry for the emaneeventservice application.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE eventservice SYSTEM "file:///usr/share/emane/dtd/eventservice.dtd">
<eventservice name="Sample Event Service" deployment="deployment.xml">
<param name="eventservicegroup" value="224.1.2.8:45703"/>
<param name="eventservicedevice" value="eth0"/>
<generator name="Emulation Event Log Generator" definition="eelgenerator.xml"/>
<generator name="Antenna Direction Generator" definition="antennadirectiongenerator.xml"/>
</eventservice>

Listing 4.1: Sample Event Service XML configuration loading two Event Generators.

No restriction is placed on how Event Generators create events. Some Event Generators may read precom-
puted state information from input files and publish events on time boundaries. Others may create event
data algorithmically in realtime and publish the events based on update threshold logic. When new EMANE
event types are introduced, no modifications are necessary to existing EMANE components, provided those
components are not required to process the new events. Only the Event Generator and the destination
EMANE components need to know the more specialized form of the generically transmitted event. Events
are addressable using a three field tuple: NEM Platform Server identifier, NEM identifier and component
identifier.

33

34 CHAPTER 4. EVENTS

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE deployment SYSTEM "file:///usr/share/emane/dtd/deployment.dtd">
<deployment >
<platform id="1">
<nem id="1"/>
</platform>
<platform id="2">
<nem id="2"/>
</platform>
<platform id="3">
<nem id="3"/>
</platform>
<platform id="4">
<nem id="4"/>
</platform>
</deployment >

Listing 4.2: Deployment XML resulting from the emulation experiment described in Section 2.1.2 on page 10.

emaneeventservice (1) emaneeventservice (1)
NAME
emaneeventservice - EMANE Event Service
SYNOPSIS
emaneeventservice [OPTIONS]... CONFIG_URI
DESCRIPTION

emaneeventservice creates and manages event generators. These genera-
tors create events that are transmitted to targeted NEM components.

CONFIG_URI is the XML containing the Event Service configuration.

OPTIONS
The following options are supported:

--version
Display version and exit

--loglevel [0,4]
Set the current application log level.
0 - No Logging
1 - Abort Level
2 - Error Level
3 - Stat Level
4 - Debug Level

--realtime
Run with realtime priority and SCHED_RR. Must have superuser
privilege.

--starttime
Set the start time HH:MM:SS (ex. 09:30:00)

--nextday
Set the start time to start the test on the next day, after mid-

night

--logserver DESTINATION:PORT
Enable remote logging and direct all 1logging messages to the
given endpoint.

--logfile FILE
Log to a file

--daemonize
Run EMANE in the background

--syslog
Log to syslogd

Listing 4.3: emaneeventservice man page entry.

4.1. EVENT SERVICE 35

Event Generator XML configuration mirrors the layout of the PHY Layer, MAC Layer, and Shim Layer
XML described in Section 3.1 Defining an NEM on page 26 with two differences: Event Generators use
the eventgenerator.dtd and the root XML element is <eventgenerator>. Listing 4.4 shows a sample Event
Generator XML configuration.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE eventgenerator SYSTEM "file:///usr/share/emane/dtd/eventgenerator.dtd">
<eventgenerator name="Emulation Event Log" library="eelgenerator">
<param name="inputfile" value="/home/emane/demonstration/8/scenario.eel"/>
<param name="loader" value="location:eelloaderlocation:full"/>
<param name="loader" value="pathLoss:eelloaderpathloss:full"/>
<param name="loader" value="antennadirection:eelloaderantennadirection:full"/>
</eventgenerator >

Listing 4.4: Sample Event Generator XML configuration.

4.1.1 Event Service Configuration Parameters

4.1.1.1 eventservicegroup

The Event Service Channel mulitcast endpoint used to communicate events between EMANE components
in an EMANE deployment.

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="eventservicegroup" value="224.1.2.8:45703">

Parameter value format description:
<IPv4 Multicast Group>:<Port> | <IPv6 Multicast Group>/<Port>

Name Description

IPvj or IPv6 Multicast Address Event Service Channel multicast group
Port Event Service Channel UDP port

4.1.1.2 eventservicedevice

The network device to associate with the Event Service Channel multicast endpoint. If missing, the kernel
routing table is used to route multicast joins and packet transmissions.

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="eventservicedevice" value="ethO"/>

36

4.2

An Event Agent is an EMANE component that translates events from their emulation domain representation
to a format usable by application domain entities. They facilitate the reuse of any experiment scenario in-
formation propagated via an event that is of interest outside of the emulation domain. For example, position
information contained in the EMANE Location Event which is used by some PHY Layers to compute path
loss may also be of interest to application domain entities that require GPS location. Event Agents are

Event Daemon

instantiated and managed by an Event Daemon.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE eventdaemon SYSTEM "file:///usr/share/emane/dtd/eventdaemon.dtd">
<eventdaemon name="EMANE Event Daemon 1" nemid="1">

<param name="eventservicegroup" value="224.1.2.8:45703"/>

<param name="eventservicedevice" value="eth0"/>

<agent definition="gpsdlocationagent.xml"/>
</eventdaemon >

Listing 4.5: Sample Event Daemon XML configuration loading one Event Agent.

Event Daemons instantiate one or more Event Agents based on an XML configuration file. The Event Dae-
mon application is named emaneeventd and the Event Daemon configuration file is referred to as the Event
Daemon XML. Listing 4.5 shows a sample Event Daemon XML configuration. Listing 4.6 shows the man

page entry for the emaneeventd application.

emaneeventd (1)

NAME

emaneeventd - EMANE event daemon

SYNOPSIS

emaneeventd [OPTIONS]... CONFIG_URI

DESCRIPTON

emaneeventd application is a container application that creates and
manages event agents. These agents register to receive events and act
upon these events to allow external applications to use the event data.
One example is the gpsdlocationagent. This agent receives location
events and translates those events to NMEA stings which it communicates
to gpsd by creating a pseudo terminal and acting like a GPS receiver.

CONFIG_URI is the XML containing the event daemon configuration.

OPTIONS

The following options are supported:

--version
Display version and exit

--loglevel [0,4]
Set the current application log level.
0 - No Logging
1 - Abort Level
2 - Error Level
3 - Stat Level
4 - Debug Level

--logserver DESTINATION:PORT
Enable remote logging and direct all 1logging messages to the
given endpoint.

--realtime
Run with realtime priority and SCHED_RR. Must have superuser
privilege.

--logfile FILE
Log to a file

CHAPTER 4. EVENTS

emaneeventd (1)

4.2. EVENT DAEMON 37

--daemonize
Run EMANE in the background

--syslog
Log to syslogd

Listing 4.6: emaneeventd man page entry.

Event Agent XML configuration mirrors the layout of the PHY Layer, MAC Layer, and Shim Layer XML de-
scribed in Section 3.1 Defining an NEM on page 26 with two differences: Event Agents use the eventagent.dtd
and the root XML element is <eventagent>. Listing 4.7 shows a sample Event Agent XML configuration.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE eventagent SYSTEM "file:///usr/share/emane/dtd/eventagent.dtd">
<eventagent name="gpsdlocationagent" library="gpsdlocationagent">

<param name="gpsdconnectionenabled" value="no"/>

<param name="pseudoterminalfile" value="/var/tmp/gps.pty"/>
</eventagent >

Listing 4.7: Sample Event Agent XML configuration.

4.2.1 Event Daemon Configuration Parameters

4.2.1.1 eventservicegroup

The Event Service Channel mulitcast endpoint used to communicate events between EMANE components
in an EMANE deployment.

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="eventservicegroup" value="224.1.2.8:45703">

Parameter value format description:
<IPvj Multicast Group>:<Port> | <IPv6 Multicast Group>/<Port>

Name Description

IPv/ or IPv6 Multicast Address FEvent Service Channel multicast group
Port Event Service Channel UDP port

4.2.1.2 eventservicedevice

The network device to associate with the Event Service Channel multicast endpoint. If missing, the kernel
routing table is used to route multicast joins and packet transmissions.

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="eventservicedevice" value="ethO"/>

38 CHAPTER 4. EVENTS
4.3 Event Types

The standard EMANE distribution contains four types of events:
e Pathloss Event
e Location Event
e Comm Effect Event

e Antenna Direction Event

4.3.1 Pathloss Event

A pathloss event contains a variable length list of pathloss entries that are unique to each targeted NEM.
A pathloss entry consists of a transmitter NEM Id and the pathloss to/from the transmitter NEM with re-
spect to the targeted NEM. EMANE components that are capable of processing pathloss events maintain a
table of transmitter NEM Ids and pathloss entry data, updating their respective entries as events are received.

The standard EMANE distribution contains one component which processes pathloss events: the Universal
PHY Layer (See Chapter 7 Universal PHY Layer on page 59). The Universal PHY Layer can be configured
to use pathloss to calculate the rzPower associated with a received over-the-air packet.

The standard EMANE distribution contains two event generators that produce pathloss events: Mitre Mo-
bility Model Event Generator and Emulation Fvent Log Generator (See Chapter 13 Mitre Mobility Model
Event Generator on page 127 and Chapter 15 Emulation Event Log Generator on page 137). Pathloss
events can also be generated using libemaneeventservice or its corresponding Python bindings. The num-
ber of pathloss entries contained in each Pathloss Event depends on the generator type and/or configuration.

The Loss Controller GUI application can be used to create and playback Mitre Mobility Model Event
Generator based pathloss scenarios. The Loss Controller GUI is introduced in Section 12.4.1 Demonstration
13 on page 121.

4.3.2 Location Event

A location event contains a viable length list of location entries that update the GPS location of one or more
NEMs. A location entry consists of an NEM Id and the latitude, longitude, and altitude associated with
that NEM. EMANE components that are capable of processing location events maintain a table of NEM Ids
and location entry data, updating their respective entries as events are received.

The standard EMANE distribution contains two components which process location events: Universal PHY
Layer and GPSd Location Agent (See Chapter 7 Universal PHY Layer on page 59 and Chapter 18 GPSd
Location Agent on page 151). The Universal PHY Layer can be configured to use location to calculate the
pathloss between two NEMs base on either a 2-ray flat earth or free space propagation model. The Universal
PHY Layer also requires location for directional antenna support. The GPSd Location Agent uses location
events to emulate an attached GPS receiver.

The standard EMANE distribution contains three event generators that produce location events: Mitre
Mobility Fvent Generator, Emulation Event Log Generator, and Emulation Script Generator (See Chap-
ter 13 Mitre Mobility Model Event Generator on page 127, Chapter 14 Emulation Script Event Generator
on page 133, and Chapter 15 Emulation Event Log Generator on page 137). Location events can also be
generated using libemaneeventservice or its corresponding Python bindings. The number of location entries
contained in each Location Event depends on the generator type and/or configuration.

4.4. DEMONSTRATIONS 39

4.3.3 Comm Effect Event

A Comm Effect event contains a variable length list of communication effect entries that are unique to each
targeted NEM. A communication effect entry consists of a transmitter NEM Id and the latency, jitter, loss,
duplication rate, unicast bitrate, and broadcast bitrate associated with packets received from the respective
transmitter NEM to the target NEM. EMANE components that are capable of processing Comm Effect
events maintain a table of transmitter NEM Ids and communication effect entry data, updating their respec-
tive entries as events are received.

The standard EMANE distribution contains one component that processes Comm Effect events: Comm
Effect Shim Layer (See Chapter 10 Comm Effect Shim Layer on page 97).

The standard EMANE distribution contains one event generator that produces Comm Effect events: Comm
Effect Generator. Comm Effect events can also be generated using libemaneeventservice or its corresponding
Python bindings.

The Comm Effect Controller GUI application can be used to create and playback Comm Effect Genera-
tor based Comm Effect scenarios.

4.3.4 Antenna Direction Event

An antenna direction event contains a variable length list of antenna direction entries that update the an-
tenna direction of one or more NEMs. An antenna direction entry consists of an NEM Id and the antenna
elevation, azimuth, beam width elevation, and beam width azimuth associated with that NEM.

The standard EMANE distribution contains one component that processes antenna events: Universal PHY
Layer (See Chapter 7 Universal PHY Layer on page 59). The Universal PHY Layer can be configured to
use antenna pointing information as part of over-the-air packet processing.

The standard EMANE distribution contains two event generators that produces antenna direction events:
Antenna Direction Generator and Emulation Event Log Generator (See Chapter 17 Antenna Direction Event
Generator on page 147 and Chapter 15 Emulation Event Log Generator on page 137). Antenna direction
events can also be generated using libemaneeventservice or its corresponding Python bindings.

4.4 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

4.4.1 Demonstration 3

This demonstration deploys a ten node distributed IEEE 802.11abg NEM emulation experiment illustrated
in Figure 4.1. The goal of this demonstration is to become familiar with the basic EMANE components
involved in producing and consuming events.

4.4.1.1 Demonstration Procedure

1. Review the Demonstration 3 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/3
[emane@emanedemo 3] less platform#*.xml

40 CHAPTER 4. EVENTS

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual
Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10
NEM 1 NEM 3 NEM 3 NEM 4 MNEM 5 MNEM 6 NEM 7 NEM 8 MNEM 9 MNEM 10

(5' é &) (JJ &j‘ él é‘ &) é‘ &
i i i ; | i i
N I_/' "-\I I_/-' Y Fa \ I,-" -\. - I/' "\I I,f" Y p "\I I," =~
T T T T T e | T n’
1 2 3 4 5 6 7 8 9 10

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform 6 Platform 7 Platform 8 Platform 9 Platform 10
NEM 1 NEM 2 MNEM 3 MNEM 4 MNEM & MNEM & NEM 7 NEM 8 MNEM 9 MNEM 10
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

Figure 4.1: Demonstration 3 - Ten node distributed IEEE 802.11abg NEM deployment.

2. Deploy the demonstration.
[emane@emanedemo 3]$ sudo ./lxc-demo-start.sh
3. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR

Viewer from the launcher to the right of the Firefox launcher. Switch to the Visualization tab. The
mobility scenario will begin in 30 seconds.

emanedemo-0.7.x [Running] - Oracle VM VirtualBox

Machine View Devices Help

Demolid: 3 Demo Nodes: 10

€ Applications [@) OLSR Viewer -
| |

File Options

Logging

olsrviewer

Node | Fotes] Nolea| Goat UAH | NorMprSel| Laitude | Longitde | At Sat_|Staus] Age
a

1010001 5
1010002 5
1010003 5
1010004 5
1010005 5
1010006 5
1010007 3
1010008 3
1010009 3
10.1000.10 3

255
255
255
255
255
255
255
255
255
255

10110110 5/0/0
10110110 5/0/0
10110110 5/0/0
10110110 5/0/0
10110110 5/0/0
10110110 5/0/0
10110110 3/0/0
10110110 3/0/0
10110110 3/0/0
10110110 3/0/0

0037071 74402757 3
10036961 74482646 3
40036879 74482492 3
10036781 74482366 3
0031503 74522712 3
10036589 74482167 3
0031075 74523512 3
0031163 74523407 3
0031226 74523262 3
10031268 74523088 3

608 OK
o608 OK
0608 OK
0608 OK
0608 OK
0608 OK
0608 OK
0608 OK
0608 OK
0608 OK

00:00:00
00:00:01
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00
00:00:00

Secied | Vcmtenton 3

1010005

nodes: 10 warn: 0 miss: 0 avgeost: 1000

] olsrviewer [[
@

@ [@IRight Ctrl

4. Connect to virtual node-1.
[emane@emanedemo 3]$ ssh node-1
5. Review the running processes.

[emane@node-1 ~1$ ps ax

PID TTY STAT TIME COMMAND

17 S+ 0:00 /usr/lib/lxc/lxc-init -- /tmp/lxc-node/3/1/init.sh -s

6 7 s1 0:02 emanetransportd -r -d /home/emane/demonstration/3/transp
11 7 S1 0:07 emane /home/emane/demonstration/3/platformi.xml -r -d -1

4.4. DEMONSTRATIONS

24
32
37
40
41
43
45
46
106

N N N N N N N

pts/1
pts/1

S<s

[elelNeleNeNeNeoNe e}

:00
:00
:10
:00
:00
:00
:00
:00
:00

6. Disconnect from node-1.

[emane@node-1 ~]$ exit
logout

emaneeventd -d /home/emane/demonstration/3/eventdaemoni.
gpsd -n -b /dev/pts/0

/usr/local/bin/olsrd -f /home/emane/demonstration/3/olsr
/usr/sbin/sshd -o PidFile=/tmp/lxc-node/3/1/run/sshd.
/usr/local/bin/mgen input /home/emane/demonstration/3/mg
sshd: emane [priv]

sshd: emane@pts/1

-bash

ps ax

Connection to node-1 closed.

7. Stop the demonstration.

[emane@emanedemo 3]$ sudo ./lxc-demo-stop.sh

4.4.1.2 Concept Review

41

1. What are the EMANE component event consumers in this demonstration and where are they hosted?

2. What is the difference between the Event Service and the Event Daemon?

42

CHAPTER 4. EVENTS

Chapter 5

XML Configuration

5.1 Layered Configuration

EMANE uses a generic XML configuration design. All EMANE components are capable of specifying any
number of configuration parameters using a generic syntax. These parameter value pairs are made accessible
to their respective components via a configuration API that removes the need for component developers to
process XML.

EMANE XML is layered to allow tailoring of lower levels of configuration to simplify deployment and
promote reuse. Complex EMANE components are created by combining XML definitions. For example, an
NEM is simply the combing of a MAC XML definition, PHY XML definition, and transport XML definition.

Configuration parameters do not need to be present in the XML if they are not required. Figure 5.1
depicts the XML configuration hierarchy for each of the EMANE container applications.

NEM Platform Server Transport Daemon

Transport
Daemon 4

Transpon[

Yy \J A
MACDLL PHYDLL Transport DLL

\j
Transport DLL

Event Service Event Daemon

Event

—— = Deployment
Daemon

Event

§ Event Agent
Generator 4 y

A
Generator DLL Agent DLL

Figure 5.1: EMANE XML Hierarchy. Layers shaded in gray represent XML files.

43

44

CHAPTER 5. XML CONFIGURATION

Listings 5.1, 5.2 and 5.3 illustrate the EMANE layered XML concept. The NEM Platform Server XML
shown in Listing 5.1 deploys two RF Pipe NEMs. In this example, the lowest level XML configuration in the
hierarchy is the PHY Layer configuration contained in universalphy.zml (Listing 5.3). Here the frequency
parameter is set to 2347 MHz. The NEM defined in rfpipenem.azml (Listing 5.2) uses the PHY Layer defined
in wniversalphy.xml but overrides the frequency parameter, setting it to 3340 MHz. The NEM Platform
Server definition contained in platform.zml instantiates two NEMs. NEM 1 overrides the frequency pa-
rameter value contained in rfpipenem.zml and sets NEM 1’s frequency to 3000 MHz. NEM 2 uses the
frequency value set in rfpipenem.xml, 3340 MHz. In this example the frequency value 2347 MHz contained

in universalphy.zml is never used.

<platform name="Platform 1" id="1">
<param name="otamanagerchannelenable" value="off"/>
<param name="eventservicegroup" value="224.1.2.8:45703"/>
<param name="eventservicedevice" value="lo"/>

<nem name="NODE-001" id="1" definition="rfpipenem.xml">
<param name="platformendpoint" value="localhost:8181"/>
<param name="transportendpoint" value="localhost:8171"/>
<phy definition="rfpipephy.xml">
<param name="frequency" value="3000000"/>
</phy>
<transport definition="transraw.xml">
<param name="device" value="ethl1"/>
</transport>
</nem>

<nem name="NODE-002" id="2" definition="rfpipenem.xml">
<param name="platformendpoint" value="localhost:8182"/>
<param name="transportendpoint" value="localhost:8172"/>
<transport definition="transraw.xml">

<param name="device" value="eth2"/>

</transport>

</nem>

</platform>

Listing 5.1: platform.zml: NEM Platform Server XML overriding NEM 1 frequency parameter.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE nem SYSTEM "file:///usr/local/emane/dtd/nem.dtd">
<nem name="RF-PIPE NEM">
<mac definition="rfpipemac.xml"/>
<phy definition="universalphy.xml">
<param name="subid" value="2"/>
<param name="frequency" value="3340000"/>
</phy>
<transport definition="transvirtual.xml"/>
</nem>

Listing 5.2: rfpipenem.azml: NEM XML overriding Universal PHY Layer frequency parameter.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE phy SYSTEM "file:///usr/local/emane/dtd/phy.dtd">
<phy name="universalphy" library="universalphylayer">

<param name="bandwidth" value="1000"/>
<param name="antennagain" value="0.0"/>
<param name="systemnoisefigure" value="4.0"/>
<param name="frequencyofinterest" value="2347000"/>
<param name="pathlossmode" value="pathloss"/>
<param name="noiseprocessingmode" value="off"/>
<param name="defaultconnectivitymode" value="on"/>
<param name="txpower" value="0.0"/>
<param name="frequency" value="2347000"/>
<param name="antennaazimuthbeamwidth" value="360.0"/>

<param name="antennaelevationbeamwidth" value="180.0"/>

5.2. AUTOMATIC XML GENERATION

<param name="antennaazimuth" value="0.0"/>

<param name="antennaelevation" value="0.0"/>

<param name="antennatype" value="omnidirectional"/>
</phy>

45

Listing 5.3: universalphy.zml: Universal PHY Layer XML.

5.2 Automatic XML Generation

The standard EMANE distribution provides two tools that can be used to automatically generate Transport
Daemon XML and deployment XML: emanegentransportxml and emanegendeploymentxml, respectively.
Listing 5.4 shows the man page entry for emanegentransportxml. Listing 5.5 shows the man page entry for

emanegendeploymentxml.

emanegentransportxml (1) emanegentransportxml (1)
NAME
emanegentransportxml - EMANE transport daemon XML generator
SYNOPSIS
emanegentransportxml [OPTIONS]... URI
DESCRIPTON

Application generates XML configuration file(s) for virtual interface

network entry point(s). Each EMANE platform contains one or more

Net -

work Emulation Modules (NEMs). In order to gain access to each of the
NEMs, a virtual interface is configured to be brought up (either within

the platform configuration file or the nem configuration file).
application scans through the platform and nem configuration files

This
and

extracts interface-specific information into separate files. The files
can then be used as configuration input into the emanetund application
to create an NEM-to-emanetund pair, establishing a ’tunnel’ for network

traffic.

OPTIONS
The following options are supported:

URI URI of the XML containing the NEM configuration for the
form.

--outpath LOCATION
Specifies output location for generated xml files
Default: current working directory

--dtdpath LOCATION
Specifies the location of the directory containing DTDs

plat-

Default: directory in the SYSTEM declaration in platform URI

--dtd DTD
Specifies the DTD file to validate against
Default: transport.dtd

--debug
Enable debug output

--help Print usage information and exit.

Listing 5.4: emanegentransportxml man page entry.

46

CHAPTER 5. XML CONFIGURATION

manegendeploymentxml (1)

emanegendeploymentxml (1)

NAME
emanegendeploymentxml - EMANE deployment XML generator

SYNOPSIS
emanegendeploymentxml [OPTIONS]... URIs

DESCRIPTON
Application scans through the supplied platform configuration XML
file(s) to generate a single XML file which maps Network Emulation Mod-
ules (NEMs) to their corresponding platform. The file is then used by
emane for inter-platform network addressing.

OPTIONS

The following options are supported:

URIs URI of one (or more) XML files containing the NEM

for the platform.

--inpath LOCATION

configuration

Specifies the location containing XML with NEM configuration for

the platform which uses the platformPID.xml

corresponds to a unique platform identifier).

format (where PID
NOTE: This option

assumes that NO files (URIs) were specified on the command line.

The two are mutually exclusive.

--outpath LOCATION

Specifies output location for generated deployment XML file.

Default: current working directory

--dtdpath LOCATION

Specifies the location of the directory containing DTDs
Default: directory in the SYSTEM declaration in platform URI

--dtd DTD
Specifies the DTD file to validate against
Default: deployment.dtd

--debug
Enable debug output

--help Print usage information and exit.

Idsthlg 5.5: emanegendeploymentxml man page entry.

5.3 Transport Grouping

The emanegentransportxml application will use the Platform XML transport element’s optional group
attribute, if present, to group transports with matching values into a single Transport Daemon XML con-
figuration. The Platform XML in Listing 5.6 groups all the transport instances into the single Transport

Daemon XML configuration shown in Listing 5.7.

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE platform SYSTEM "file:///usr/share/emane/dtd/platform.dtd">

<platform name="Platform 1" id="1">
<param name="otamanagerchannelenable" value="off"/>
<param name="eventservicegroup" value="224.1.2.8:45703"/>
<param name="eventservicedevice" value="lo"/>

<nem name="NEM-1" id="1" definition="rfpipenem.xml">
<param name="platformendpoint" value="localhost:8201"/>

<param name="transportendpoint" value="localhost:8301"/>

<transport definition="transraw.xml" group="alpha">
<param name="device" value="vethl.1"/>
</transport>
</nem>

5.4. DEMONSTRATIONS

<nem name="NEM-2" id="2" definition="rfpipenem.xml">
<param name="platformendpoint" value="localhost:8202"/>
<param name="transportendpoint" value="localhost:8302"/>
<transport definition="transraw.xml" group="alpha">
<param name="device" value="veth2.1"/>
</transport>
</nem>

<nem name="NEM-3" id="3" definition="rfpipenem.xml">
<param name="platformendpoint" value="localhost:8203"/>
<param name="transportendpoint" value="localhost:8303"/>
<transport definition="transraw.xml" group="alpha">
<param name="device" value="veth3.1"/>
</transport>
</nem>

<nem name="NEM-4" id="4" definition="rfpipenem.xml">
<param name="platformendpoint" value="localhost:8204"/>
<param name="transportendpoint" value="localhost:8304"/>
<transport definition="transraw.xml" group="alpha">

<param name="device" value="veth4.1"/>

</transport>

</nem>

</platform>

47

Listing 5.6: Platform XML using Transport Grouping.

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE transportdaemon SYSTEM "file:///usr/share/emane/dtd/transportdaemon.dtd">
<transportdaemon>
<instance nemid="1">
<param name="transportendpoint" value="localhost:8301"/>
<param name="platformendpoint" value="localhost:8201"/>
<transport definition="transraw.xml">
<param name="device" value="vethl.1"/>
</transport>
</instance>
<instance nemid="2">
<param name="transportendpoint" value="localhost:8302"/>
<param name="platformendpoint" value="localhost:8202"/>
<transport definition="transraw.xml">
<param name="device" value="veth2.1"/>
</transport>
</instance>
<instance nemid="3">
<param name="transportendpoint" value="localhost:8303"/>
<param name="platformendpoint" value="localhost:8203"/>
<transport definition="transraw.xml">
<param name="device" value="veth3.1"/>
</transport>
</instance>
<instance nemid="4">
<param name="transportendpoint" value="localhost:8304"/>
<param name="platformendpoint" value="localhost:8204"/>
<transport definition="transraw.xml">
<param name="device" value="veth4.1"/>
</transport>
</instance>
</transportdaemon>

Listing 5.7: Transport Daemon XML resulting from the Platform XML in Listing 5.6.

5.4 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter
review each demonstration.

. Deploy and

48 CHAPTER 5. XML CONFIGURATION

5.4.1 Demonstration 4

This demonstration deploys a ten node hybrid RF-Pipe NEM emulation experiment illustrated in Figure 5.3.
The goal of this demonstration is to become familiar with the EMANE XML Hierarchy.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node -6 node-7 node-8 node-9 node-10

NEM 1 NEM 3 MEM 3 NEM 4 NEM 5 NEM 6 NEM 7 NEM 8 NEM 3 MNEM 10

I l I I I l

.
D

| [|
= > 21T A
) ||| @ | @D é I I I I
Q}/ A < A 410418 41k 4 \ 4

T I T . If :.\T T :I) T T 1
N P2y B3 P BEN e |2 | (e || BeN || Mo
I | | |] | | | [

MNEM 1 MNEM 2 NEM 3 NEM 4 MNEME Platform € Platform 7 Platform 8 Flatform 9 Platform 10
NEM 6 MNEM 7 MNEM 8 MNEM 9 MNEM 10

Platform 1 node-6 node-7 node-8 node-9 node-10
node-senver

Figure 5.2: Demonstration 4 - Ten node hybrid RF Pipe NEM deployment.

5.4.1.1 Demonstration Procedure

1. Review the Demonstration 4 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/4
[emane@emanedemo 4] less platform{, [6-9],10}.xml

2. Deploy the demonstration.
[emane@emanedemo 4]$ sudo ./lxc-demo-start.sh

3. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

4. Visually verify that the network has formed ali-informed. There should be 10 nodes with 9 routes each.
5. Stop the demonstration.
[emane@emanedemo 4]1$ sudo ./lxc-demo-stop.sh

6. Modify the platform XML file platform.zmil using your favorite editor. Change Lines 10, 19, 29, 38 and
47 to use rfpipenem2.2ml. The below stream editor command can be used as a shortcut:

[emane@emanedemo 4]$ sed -i -e s/rfpipenem/rfpipenem2/ platform.xml
7. Rebuild the deployment files.

[emane@emanedemo 4]$ make
8. Compare rfpipenem.zml and rfpipenem2.2ml using your favorite editor.

[emane@emanedemo 4]$ meld rfpipenem.xml rfpipenem2.xml

9. Redeploy the demonstration.

5.4. DEMONSTRATIONS 49

[emane@emanedemo 4]$ sudo ./lxc-demo-start.sh
10. Visually verify that 2 distinct networks have formed. There should be 10 nodes with 4 routes each.
11. Stop the demonstration.

[emane@emanedemo 4]$ sudo ./lxc-demo-stop.sh

5.4.1.2 Concept Review

1. If the same configuration parameter appears in an NEM definition in the platform XML and in that
NEM’s NEM XML configuration file which value is used?

2. Why did two distinct networks form after the platform.zml file was modified and redeployed?

5.4.2 Demonstration 5

This demonstration generates the XML configuration necessary to deploy a ten node hybrid RF-Pipe NEM
emulation experiment illustrated in Figure 5.3. The goal of this demonstration is to become familiar with
the EMANE automatic XML generation tools emanegentransportxml and emanegendeploymentxml.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node -6 node-7 node-8 node-9 node-10

NEM 1 NEM 3 MNEM 3 NEM 4 NEM 5 NEM 6 NEM 7 NEM 8 NEM 9 MNEM 10

i | | |

I l I
A \ N A A
1) <2\ <3\,» Q\ @ ® & | 1€9)> || 40
Q}/ 4 4 4 \/ \/ \/ < V
i H

D

~
.
o
~
.

<

Foeédd

A
N é

b

p

b

i
I (S P

I'- T.‘ \ ._I_
1 2 3 4 5
| | | | | | |] |

NEM 1 NEM2 NEM3 NEM4 NEM & Platform 6 Platform 7 Platform & Platform 9 Platform 10
Plaif 1 NEM & NEM 7 NEM 8 NEM 9 NEM 10
atiorm node-6 node-7 node-8 node-9 node-10
node-server

(o)]
~J
(04]
[(e]
o

Figure 5.3: Demonstration 5 - Ten node hybrid RF Pipe NEM deployment.

5.4.2.1 Demonstration Procedure

1. Review the Demonstration 5 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/5
[emane@emanedemo 5] less platform{, [6-9],10}.xml

2. Generate the Transport Daemon XML configuration.
[emane@emanedemo 5]$ emanegentransportxml platform#.xml

3. Generate the Deployment XML configuration.

[emane@emanedemo 5]$ emanegendeploymentxml platform*.xml

50 CHAPTER 5. XML CONFIGURATION

5.4.2.2 Concept Review

1. Which EMANE application processes Platform XML?
2. Which EMANE application processes Deployment XML?

Chapter 6

Deployment Debugging

6.1 NEM Platform Server Debug Port

The NEM Platform Server can be configured to enable an external debug port using the debugportenable
parameter. The debug port is accessible via any telent client and provides an interface to retrieve layer stack
and statistic information for all NEMs contained in a platform. The default debug port TCP port is 47000
and can be modified using the debugport parameter. See Section 2.1.3 NEM Platform Server Configuration
Parameters on page 11 for more information.

The NEM Platform Server currently supports eight commands:

clear Clears the screen

exit Terminates the debug port session

help Lists supported command and displays command specifics

stats Queries and displays the statistics of one or more of the NEMs contained in the platform

clearstats Clears the statistics of one or more of the NEMs contained in the platform

showstacks Displays the NEM Layer stack information of one or more the NEMs contained in the platform

quit Terminates the debug port session

version Displays the EMANE version

6.2 Logging

All four EMANE container applications support logging: emane, emanetransportd, emaneservice and
emaneeventd. EMANE supports five log levels and logs can be directed to stdout, file, syslog or an ACE Log
Server depending on the options used when invoking the container application. Table 6.1 lists the available
log levels along with their syslog equivalent.

Table 6.1: EMANE Log Levels with syslog mapping.

Name Description syslog mapping Option Value
NOLOG_LEVEL No Logging 0
ABORT_LEVEL Unrecoverable failure detected | LOG_USER|LOG_CRIT 1
ERROR_LEVEL Recoverable failure notification | LOG_USER|LOG_ERR 2
STATISTIC_LEVEL | Statistic out message LOG_USER|LOG_INFO 3
DEBUG_LEVEL General verbose debugging LOG_USER | LOG_DEBUG 4

51

52 CHAPTER 6. DEPLOYMENT DEBUGGING

To enable logging to stdout specify a log level greater than 0:

[emane@emanedemo 6] emane -1 4 platform.xml

To enable logging to a file specify a log level greater than 0 and use the --1ogfile option to specify the file:
[emane@emanedemo 6] emane -1 4 --logfile /tmp/emane.log platform.xml

To enable logging to syslog specify a log level greater than 0 and use the --syslog option:

[emane@emanedemo 6] emane -1 4 --syslog platform.xml

By default sysiog does not output messages at LOG_DEBUG. In order to view these messages a rule must be
added to the end of /etc/rsyslog.conf and the service restarted:

if $programname == ’emane’ and $syslogseverity == ’7’ then /var/log/messages
To enable logging to an ACE Log Server specify a log level greater than 0 and use the --1ogserver option to
specify the endpoint:

[emane@emanedemo 6] emane -1 4 --logserver node-server:8089 platform.xml

6.3 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

6.3.1 Demonstration 6

This demonstration deploys a ten node centralized IEEE 802.11abg NEM emulation experiment illustrated
in Figure 6.1. The goal of this demonstration is to become familiar with the NEM Platform Server Debug

Port.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

NEM 1 NEM 3 NEM 3 NEM 4 NEM 5 MNEM & MNEM 7 NEM 8 NEM 9 NEM 10

I I I I I

I
N N N
N b 3 \,\ N & \
A <2> v Q'/ é <

Q) |
o)
© >

~

.
.
y

SR N A S S S |
4 ! M _ - ey __4 o A 4 o
i i i i i i i
.=.. ,_.'.\ - ,.I - ‘._\ ,.:.. _..'\ /.:.‘ .’.\
)) @ @)))) ())
T T T T T T 1 T T 1

1| |2 3| 4| |5 |6 7 8 9 10
| I I | I I I I I I

T
NEM 1 NEM 2 NEM 3 NEM 4 NEM 5 I NEME NEM 7 NEM & NEM @ NEM 10

Platform 1
node-server

Figure 6.1: Demonstration 6 - Ten node centralized IEEE 802.11abg NEM deployment.

6.3. DEMONSTRATIONS

6.3.1.1 Demonstration Procedure

1. Review the Demonstration 6 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/6
[emane@emanedemo 6] less platform.xml

2. Deploy the demonstration.

[emane@emanedemo 6]$ sudo ./lxc-demo-start.sh

3. Connect to the NEM Platform Server Debug Port and display the command list.

[emane@emanedemo 6]$ telnet node-server 47000
Trying 10.99.0.100...

Connected to node-server.

Escape character is ’7]°.

debugport %/ help

Form more information: ‘help <command>‘

command list:
clear

exit

help

stats
clearstats
showstacks
quit
version

debugport %%

4. View the detailed help for showstacks and stats.

debugport %% help showstacks

command : showstacks
description: Show NEM stack
usage : showstacks [nem]

debugport %% help stats

command : stats
description: Show statistics
usage : stats [all|nem|layer|index|stat]

5. Query NEM stack configurations and component statistics.

debugport %% showstacks 1

NEM 1
LAYER INDEX
mac 0
phy 1
LAYER INDEX
mac 0
phy 1

debugport %% stats index 1 1

Index 1
Layer Type phy
numDownstreamPacketFromMAC 485
numDownstreamPacketToOTA 485
numUpstreamDiscardDueToFoi 0

numUpstreamDiscardDueToFreqBandwidth O
numUpstreamDiscardDueToInvalidSubId O

numUpstreamDiscardDueToNoPathLossInfo O
numUpstreamDiscardDueToRegistrationId O

53

54 CHAPTER 6. DEPLOYMENT DEBUGGING

numUpstreamDiscardDueToSinr 1590
numUpstreamDiscardDueToSubIdMismatch O

numUpstreamPacketFrom0OTA 4317
numUpstreamPacketToMAC 2727
processedDownstreamControl 0

processedDownstreamPackets 485
processedEvents 924
processedUpstreamPackets 4317

6. Quit the telnet session and repeat the same query using netcat.
debugport %% quit
[emane@emanedemo 6]$ echo "stats index 1 1" | nc localhost 47000

7. Stop the demonstration.

[emane@emanedemo 6]1$ sudo ./lxc-demo-stop.sh

6.3.1.2 Concept Review

1. What does the index refer to in respect to NEM Platform Server Debug Port commands?
2. Is it possible to script NEM Platform Server Debug Port commands?

6.3.2 Demonstration 7

This demonstration deploys a ten node centralized IEEE 802.11abg NEM emulation experiment illustrated
in Figure 6.2. The goal of this demonstration is to become familiar with EMANE logging mechanisms.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

NEM 1 NEM 3 NEM 3 NEM 4 NEM 5 MNEM & MNEM 7 NEM 8 MNEM 9 NEM 10

[| [
\ A
é @ </7\ <8 /3 10>
y " WV,
(L L 4

/ ~ 4
i i
H __=

.
.

<

it !

Q) A 4
& 5
_. .
;

L 4

{,
L
p
L

N

S
N
S

N B28 BSh B4 SN NEN 9 10
| I | | I I I | I I

1
NEM 1 NEM 2 NEM 3 NEM 4 NEM 5 I NEM 6 NEM 7 NEM & NEM S NEM 10

Platform 1
node-server

Figure 6.2: Demonstration 7 - Ten node centralized IEEE 802.11abg NEM deployment.

6.3.2.1 Demonstration Procedure

1. Review the Demonstration 7 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/7
[emane@emanedemo 7] less platform.xml

6.3. DEMONSTRATIONS

2. Deploy the demonstration.

[emane@emanedemo 7]$ sudo ./lxc-demo-start.sh

3. Shutdown the NEM Platform Server.

[emane@emanedemo 7]$ sudo killall -QUIT emane

4. Restart the NEM Platform Server with logging.

[emane@emanedemo 7]1$ emane -1 4 platform.xml
5. Stop the demonstration.

[emane@emanedemo 6]$ sudo ./lxc-demo-stop.sh

6.3.2.2 Concept Review

1. What types of EMANE logging are permitted when daemonizing the container application?

2. What should be the maximum log level used during an emulation experiment? Why?

%)

56

CHAPTER 6. DEPLOYMENT DEBUGGING

Part 11

Models

57

Chapter 7

Universal PHY Layer

The Universal PHY Layer provides a common PHY implementation for the various MAC Layers supplied as
part of the standard EMANE distribution. Its use is not mandatory but is encouraged for authors of other
proprietary and non-proprietary MAC implementations as it provides a set of core functionality required by
most wireless Network Emulation Modules. The key functionality includes the following:

o Pathloss Calculation

¢ Receive Power Calculation

e Directional Sector Antenna Support
¢ Noise Processing

e MAC-PHY Control Messaging

7.1 Model Features

7.1.1 Pathloss Calculation

Pathloss within the Universal PHY Layer is based on location or pathloss events. Pathloss is dynami-
cally calculated based on location events when the pathlossmode configuration parameter is set to either
2ray Or freespace, which selects between the 2-ray flat earth or free space propagation models, respectively.
Pathloss can be provided in realtime based on external propagation calculations using pathloss events. The
pathlossmode configuration parameter should be set to pathloss in order to process inbound pathloss events.

7.1.2 Receive Power Calculation

For each received packet, the Universal PHY Layer computes the receiver power associated with that packet
using the following calculation:

rezPower = txPower + tx AntennaGain + rx AntennaGain — pathloss

Where,

txPower Packet Common PHY Header transmitter power (See Section 3.2)
tzAntennaGain Packet Common PHY Header transmitter antenna gain (See Section 3.2)
rezAntennaGain Configuration parameter antennagain (Section 7.2.2)

pathloss Pathloss between transmitter and receiver determined based on pathlossmode

configuration parameter (See Section 7.2.5)

59

60 CHAPTER 7. UNIVERSAL PHY LAYER

If the rzPower is less than the rzSensitivity, the packet is silently discarded.
rzSensitivity = —174 + noise Figure + 10 log(bandWidth)
Where,

band Width Configuration parameter bandwidth (Section 7.2.1)

noiseFigure Configuration parameter noisefigure (Section 7.2.3)

7.1.3 Directional Sector Antenna Support

The Universal PHY Layer provides support for directional antenna, if required. This support includes the
ability to statically configure the directional antenna parameters (pointing and profile) as well as the ability
to accept parameters from the MAC Layer via a control message on a per packet basis and via antenna
pointing events. The Universal PHY Layer utilizes location events and Tx and Rx antenna information to
determine if two nodes are visible. Current directional antenna support is based on sector antennas, where a
sector is defined by antenna azimuth and elevation beam width. Any intersection between the transmitting
and receiving antenna will apply full gain. Figure 7.1 illustrates a transmitter and receiver with and without
beam overlap.

Transmitter Transmitter

Receiver Receiver

Figure 7.1: Transmitter and receiver antenna beam overlap (Left). Transmitter and receiver no antenna beam overlap (Right).

Figure 7.2 visualizes the four configuration items that are necessary to define the pointing and profile charac-
teristics of a directional antenna: antennaazimuth, antennaelevation, antennaazimuthbeamwidth and antennaelevation-
beamwidth.

7.1.4 Noise Processing

The Universal PHY Layer provides the ability to assess the impact of intentional and unintentional noise
sources within the emulation by adjusting the noise floor. This is achieved by summing the energy of
interferers within the appropriate frequency of interest over a given time interval and adjusting the noise
floor accordingly when a valid packet is received. The Universal PHY Layer only computes interference for
out-of-band packets. An out-of-band packet is one which is not from the same emulated waveform. The
Universal PHY Layer determines waveform type by comparing the PHY Registration Id, center frequency,

7.2. CONFIGURATION PARAMETERS 61

270° | 90"

Antenna Azimuth

-90°

Figure 7.2: Universal PHY Layer Directional Antenna configuration.

and Universal PHY Layer subid of each packet. It is the responsibility of the MAC Layer implementation
to account for in-band interference.

7.1.5 MAC-PHY Control Messaging

The Universal PHY Layer provides a control API on a per packet basis for every transmit (Tx) packet
received from the MAC Layer for over-the-air transmission and every received (Rx) over-the-air packet sent
to the MAC Layer for processing. The Tx Control API provides the MAC Layer with the ability to override
default PHY Layer configuration for transmit power, message duration, transmit frequency and antenna
pointing as required. The Universal PHY Layer utilizes the data from the Tx Control message to populate
the Common PHY Header (See Section 3.2.1 Supporting Heterogeneous Waveforms on page 29). The Rx
Control APT provides the MAC Layer with the appropriate receive information (receive power, noise floor,
message duration, propagation delay and receive frequency) to perform functions such as SINR based packet
completion calculation, in-band collision detection and channel access protocol.

7.2 Configuration Parameters

7.2.1 bandwidth

Defines the center frequency bandwidth in KHz. This is used to compute the receiver sensitivity and is also
included in all over-the-air transmissions to support noise processing calculations.

62 CHAPTER 7. UNIVERSAL PHY LAYER

Type: Unsigned 16 bit Integer
Range: [1, 65535

Default: 1000

Count: 1

XML Format: <param name="bandwidth" value="1000">

7.2.2 antennagain

Defines the antenna gain in dBi. This is used to compute the receive power associated with an OTA packet
and included in the Common PHY Header of all transmitted OTA packets. This value can be overridden by
a MAC Layer using the TX Control API.

Type: Float

Range: [-1024.0, 1024.0]
Default: 0.0

Count: 1

XML Format: <param name="antennagain" value="0.0">

7.2.3 systemnoisefigure

Defines the system noise figure in dB. The system noise figure is used along with the bandwith to compute
the receiver sensitivity. See Section 3.2 Physical Layer on page 27 for more information.

Type: Float
Range: [0.0, 1024.0]
Default: 4.0

Count: 1

XML Format: <param name="systemnoisefigure" value="4.0">

7.2.4 frequencyofinterest

Defines a set of frequencies in KHz that the Universal PHY Layer will monitor. Multiple frequencies can be
monitored to support MAC Layer implementations with frequency agility or hopping capability. Only pack-
ets received on a frequency of interest will be sent to the MAC Layer for processing provided waveform and
receive power criteria are met. Separate noise floor calculations are maintained for each frequency of interest.

Type: Unsigned 32 bit Integer
Range: [1, 4294967295]

Default: 2347000

Count: Unlimited

XML Format: <param name="frequencyofinterest" value="2347000">

7.2.5 pathlossmode

Defines the pathloss mode of operation. The pathloss mode of operation determines whether pathloss
or location events will be used as input to the Universal PHY Layer propagation functionality. See Sec-
tion 7.1.1 Pathloss Calculation on page 59 for more information.

7.2. CONFIGURATION PARAMETERS 63

Type: String

Range: pathloss, 2ray, freespace
Default: pathloss

Count: 1

XML Format: <param name="pathlossmode" value="pathloss">

7.2.6 noiseprocessingmode

Enables or disables noise processing. When on, out of band packets (not of this waveform) within a frequency
of interest will raise the noise floor accordingly.

Type: Boolean
Range: [of£, on]
Default: off
Count: 1

XML Format: <param name="noiseprocessingmode" value="off">

7.2.7 defaultconnectivitymode

Defines the default connectivity mode for pathloss. When set to on, full connectivity will be engaged until
a valid event (pathloss or location) is received based on the pathlossmode setting. Any valid event of the
appropriate type, regardless if it contains information for the receiving NEM, will disengage default connec-
tivity mode. Directional antenna functionality, if applicable, is bypassed when default connectivity mode is
engaged. When set to off, no connectivity is in effect until a valid event is received.

Type: Boolean
Range: [of£, on]
Default: on
Count: 1

XML Format: <param name="defaultconnectivitymode" value="on">

7.2.8 txpower

Defines the transmit power in dBm. This is used to compute the receive power associated with an OTA
packet and included in the Common PHY Header of all transmitted OTA packets. This value can be over-
ridden by a MAC Layer using the TX Control API.

Type: Float

Range: [-1024.0, 1024.0]
Default: 0.0

Count: 1

XML Format: <param name="txpower" value="0.0">

7.2.9 frequency

Defines the transmit center frequency in KHz. This value is included in the Common PHY Header of all
transmitted OTA packets. This value can be overridden by a MAC Layer using the TX Control APIL

64 CHAPTER 7. UNIVERSAL PHY LAYER

Type: Unsigned 32 bit Integer
Range: [1, 4294967295]

Default: 2347000

Count: 1

XML Format: <param name="frequency" value="2347000">

7.2.10 antennaazimuthbeamwidth

Defines the antenna azimuth beam width in degrees. This is used in the directional antenna pointing com-
putation associated with an OTA packet and included in the Common PHY Header of all transmitted OTA
packets when the antennatype is unidirectional. This value can be overridden by a MAC Layer using the TX
Control API and/or via antenna pointing events.

Type: Float
Range: [0.0, 360.0]
Default: 360.0
Count: 1

XML Format: <param name="antennaazimuthbeamwidth" value="360.0">

7.2.11 antennaelevationbeamwidth

Defines the antenna elevation beam width in degrees. This is used in the directional antenna pointing com-
putation associated with an OTA packet and included in the Common PHY Header of all transmitted OTA
packets when the antennatype is unidirectional. This value can be overridden by a MAC Layer using the TX
Control API and/or via antenna pointing events.

Type: Float
Range: [0.0, 180.0]
Default: 180.0
Count: 1

XML Format: <param name="antennaelevationbeamwidth" value="180.0">

7.2.12 antennaazimuth

Defines the antenna azimuth in degrees. This is used in the directional antenna pointing computation asso-
ciated with an OTA packet and included in the Common PHY Header of all transmitted OTA packets when
the antennatype is unidirectional. This value can be overridden by a MAC Layer using the TX Control API
and/or via antenna pointing events.

Type: Float
Range: [0.0, 360.0]
Default: 360.0
Count: 1

XML Format: <param name="antennaazimuth" value="0.0">

7.3. PACKET PROCESSING FLOWS 65

7.2.13 antennaelevation

Defines the antenna elevation in degrees. This is used in the directional antenna pointing computation asso-
ciated with an OTA packet and included in the Common PHY Header of all transmitted OTA packets when
the antennatype is unidirectional. This value can be overridden by a MAC Layer using the TX Control API
and/or via antenna pointing events.

Type: Float
Range: [-90.0, 90.0]
Default: 0.0

Count: 1

XML Format: <param name="antennaelevation" value="0.0">

7.2.14 antennatype

Defines the antenna type. If the antenna type is unidirectional, location event information for both the
transmitter and receiver are required as inputs to the Universal PHY Layer for receive packet processing un-
less default connectivity mode is engaged. See Section 7.1.3 Directional Sector Antenna Support on page 60
for more information.

Type: String

Range: omnidirectional, unidirectional
Default: omnidirectional

Count: 1

XML Format: <param name="antennatype" value="omnidirectional">

7.2.15 subid

Defines the Universal PHY Layer subid. The Universal PHY Layer is used by multiple NEM definitions.
Once instantiated, these NEMs may be using the same frequency. In order to differentiate between Universal
PHY instances for different waveforms, the subid is used as part of the unique waveform identifying tuple:
PHY Layer Registration Id, Universal PHY subid and packet center frequency. The subid may also be used
to emulate instances of the same waveform operating with different TRANSEC keys.

Type: Unsigned 16 bit Integer
Range: [1, 65535

Default: 1

Count: 1

XML Format: <param name="subid" value="1">

7.3 Packet Processing Flows

The Universal PHY Layer receive packet (upstream) processing flowchart is shown in Figure 7.3 and Fig-
ure 7.4. The Universal PHY Layer does not perform any relevant transmit packet (downstream) processing.

66

/ Receive OTA Packet /

Default
Connecivity
Mode?

Event data for
pathloss method

CHAPTER 7. UNIVERSAL PHY LAYER

available for both
nodes?

Compute/Retrieve Pathloss
using configured method

Both
antenna
omni?

ol
-
A

Y

Compute rkPower and rxSensitivity

A

Drop Packet

Both node
locations
know?

Tx and Rx
antenna
pointing

at each other?

Figure 7.3: Part 1 - Universal PHY Layer receive packet (upstream) processing flow.

7.4. DEMONSTRATIONS

Center Frequency

rxPower >= RxSensitivity

No

Packet
for this
waveform?

Sub Id and

Match? Yes

Noise Level = 0

Noise
Processing
enabled?

Noise
Processing
enabled?

Frequency
of

Int i Drop Packet
nterest?

Get Noise Level from database based
on Frequency, Bandwidth, and Duration

A

r

MNoise Floor = Noise Level + rxS ensitvity

Both node
locations
know?

Progation Delay = 0

Compute Propogation Delay

v

Send MAC: Packet, rxPower, Noise Floor, Frequency, ¢
Duration, Transmit timestamp, and Propogation Delay

Figure 7.4: Part 2 - Universal PHY Layer receive packet (upstream) processing flow.

7.4 Demonstrations

67

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and

review each demonstration.

68

7.4.1 Demonstration 8

CHAPTER 7. UNIVERSAL PHY LAYER

This demonstration deploys a four node centralized IEEE 802.11abg NEM emulation experiment illustrated
in Figure 7.5. The goal of this demonstration is to become familiar with Universal PHY Layer directional

antenna support.

Virtual Virtual Virtual Virtual
Transport Transport Transport Transport
node-1 node-2 node-3 node-4
MNEM 1 MNEM 3 MNEM 3 MNEM 4

/\\ ,/\\ //\\ /\\
|23 B
L/ <&/ / g

VIIVIIVIV

ah ™y r Y

@ (‘ 4 \? @

H i H i
i g H E
:.-'.._ - ./.
] \.,I,./ ' A \.,I
1 2 3 4
|
NEM 1 NEM 2 NEM 3 MNEM 4
Platform 1
node-server

Figure 7.5: Demonstration 8 - Four node centralized IEEE 802.11abg

The four nodes in this demonstration are positioned in a rectangle

(Universal PHY Layer) NEM deployment.

located in Lakehurst, New Jersey.

’ Node: ‘ Latitude Longitude | Altitude
1 40.025495 | -74.315441 | 3.0
2 40.025495 | -74.312888 | 4.0
3 40.023235 | -74.315441 | 5.0
4 40.023235 | -74.312888 | 6.0

7.4.1.1 Demonstration Procedure

1. Review the Demonstration 8 platform XML using your favorite editor.
[emane@emanedemo ~] cd /home/emane/demonstration/8
[emane@emanedemo 8] less platform.xml

2. Review the antenna pointing scenario using your favorite editor. The Emulation Event Log Generator
is used to send location and antenna point events. Figure 7.6 illustrates the antenna pointing used in
this demonstration. See Chapter 15 Emulation Event Log Generator on page 137 for more information
on using this generator.
[emane@emanedemo 8] less scenario.eel

3. Deploy the demonstration.
[emane@emanedemo 8]$ sudo ./lxc-demo-start.sh -d 10

4. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

5. Visually verify that the network link formations match the antenna pointing scenario.

6. Stop the demonstration.

7.4. DEMONSTRATIONS

Time: Inttialization

VooV

Antenna Antenna
Azimuth 0° Azimuth 0°
3]

Antenna Antenna
Azimuth 180° Azimuth 180°

69

Time: 0

< >

Antenna Antenna
Azimuth 90° Azimuth 270°
3]
Antenna Antenna
Azimuth 90° Azimuth 270°

ANA

Antenna Antenna
Azimuth 180° Azimuth 180°

AYARRV
3

Antenna Antenna
Azimuth 0° Azimuth 0°

Time: 10

B/
B\

Ante
AzZimut

= =
= =

Antenna
: Azimuth 225°

w
7]

B\
=/

Antenna Antenna
Azimuth 45° Azimuth 315°

Time: 20

Figure 7.6: Demonstration 8 - Directional antenna pointing scenario.

[emane@emanedemo 8]$ sudo ./lxc-demo-stop.sh

7.4.1.2 Concept Review

1. How is the pathloss between nodes determined in Demonstration 87

2. How are the initial (prior to event reception) antenna pointing and profile set for the NEMs in Demon-

stration 87

3. What event information is required in order for the Universal PHY Layer to engage its directional

antenna functionality?

4. What kind of profile would an antenna azimuth beam width of 360°and an elevation beam width of

180°produce?

70

CHAPTER 7. UNIVERSAL PHY LAYER

Chapter 8

RF Pipe MAC Layer

The RF Pipe MAC Layer runs on top of the Universal PHY Layer and provides a generic MAC Layer that
can be configured to emulate waveforms that do not have a specific Network Emulation Model available.

8.1 Model Features

The RF Pipe MAC Layer provides the following set of features to support wireless emulation of varying
waveforms:

1. Data/Burst rate emulation of bandwidth (rate of data transfer): On the transmit side (downstream),
the RF Pipe MAC Layer applies a delay between packets based on packet size and configured data
rate to limit the data transfer rate as configured. Where,

(a) Delay between packet transmissions is applied after packet transmission.

(b) The computed delay is sent to the Universal PHY Layer and is included in the Common PHY
Header as message duration.

(¢) Bandwidth is a per node limit and not an overall network limit.

2. Transmission delay emulation: On the receive side (upstream), the RF Pipe MAC Layer will compute
and apply a transmission delay for each packet before sending it up the stack. The transmission delay
is computed as follows:

transmissionDelay = messageDuration + delay + jitter 4+ propagationDelay

Where,
delay Configuration parameter delay (Section 8.2.5)
Jitter Configuration parameter jitter (Section 8.2.6)

messageDuration Provided by the transmitter via the Common PHY Header

propagationDelay Provided by the Universal PHY Layer when node positions are available via location events

3. Use of user defined Packet Completion Rate (PCR) curves as a function of SINR as defined in Sec-
tion 8.3 Packet Completion Rate on page 75. It should be noted that the RF Pipe MAC Layer does
not apply any additional interference effects and as such, the use of negative SINR values within the
PCR Curve file is valid only when noise processing is enabled within the Universal PHY Layer to
raise the noise floor above the inherent receiver sensitivity (See Section 7.2.6 noiseprocessingmode
on page 63).

71

72 CHAPTER 8. RF PIPE MAC LAYER

8.2 Configuration Parameters

8.2.1 enablepromiscuousmode

Determines if all packets received over-the-air will be sent up the stack regardless of the destination NEM
1d.

Type: Boolean
Range: [of£, on]
Default: off
Count: 1

XML Format: <param name="enablepromiscuousmode" value="off">

Parameter value description:

Value Description

on Send all packets up the stack to the Transport Layer

off Send only broadcast/multicast and locally addressed unicast up

8.2.2 enabletighttiming

Determines if the over-the-air time (raTime — tzTime) should be included in the overall packet delay time.
Implies that the source and destination are in tight time sync.

Type: Boolean
Range: [of£, on]
Default: off
Count: 1

XML Format: <param name="enabletighttiming" value="off">

Parameter value description:

Value Description

on Do account for over-the-air time in delay calculation

off Do not account for over-the-air time in delay calculation

8.2.3 transmissioncontrolmap

Defines the data rate, frequency, and power level to be used by the PHY Layer for all transmissions to a
specified node. When a packet is transmitted to the destination NEM, the MAC Layer will send an accom-
panying control message to the PHY Layer that will cause the specified data rate, frequency and transmit
power to be included in the Common PHY header.

8.2. CONFIGURATION PARAMETERS 73

Type: String
Range: N/A
Default: None
Count: Unlimited

XML Format: <param name="transmissioncontrolmap" value="1:128:0:99">
<param name="transmissioncontrolmap" value="2:256:0:98">

<param name="transmissioncontrolmap" value="3:512:0:97">

Parameter value format description:
<Destination NEM>:<Data Rate>:<Frequency>:<Tz Power>

Name Description Type

Destination NEM ~ NEM Id of destination Unsigned 16 bit Integer
Data Rate Data Rate in Kbps Unsigned 16 bit Integer
Frequency Frequency in MHz Unsigned 16 bit Integer
Tz Power Transmit power level in dBm Unsigned 8 bit Integer

8.2.4 datarate

Defines the data/burst rate in Kbps of the waveform being emulated. It is used on the transmit side (down-
stream) to compute transmission delay based on the packet size and data rate. The RF Pipe MAC Layer
will wait for the message delay to expire before transmitting another packet.

Type: Unsigned 32 bit Integer
Range: [1, 4294967295]

Default: 1000

Count: 1

XML Format: <param name="datarate" value="1000">

8.2.5 delay

Defines the delay in microseconds that is to be included in the transmission delay. The delay is added to the
delay introduced by the datarate parameter.

Type: Float
Range: [1, MAX_FLOAT]
Default: 0

Count: 1

XML Format: <param name="delay" value="0">

8.2.6 jitter

Defines the jitter in microseconds to be included to the transmission delay. The jitter will be computed for
each packet transmission based on uniform random distribution between + /- the configured jitter value.

74 CHAPTER 8. RF PIPE MAC LAYER

Type: Float

Range: [MIN_FLOAT, MAX_FLOAT]
Default: 0

Count: 1

XML Format: <param name="jitter" value="0">

8.2.7 pcrcurveuri

Defines the absolute file name that contains the SINR/PCR curve values. A minimum of one SINR/PCR
pair is required, POR = 0.0 and POR = 100.0. Entries shall be in unique ascending order with up to two
decimal places of precision for SINR. The PCR, values shall represent the percentage with up to two decimal
places of precision. See Section 8.3 Packet Completion Rate for more information.

Type: String
Range: N/A
Default: rfpipepcr.xml
Count: 1

XML Format: <param="pcrcurveuri" value="rfpipepcr.xml">

8.2.8 flowcontrolenable

Enables downstream traffic flow control with Virtual Transport. flowcontrolenable is only valid when us-
ing the Virtual Transport and the setting to either on or off must match the setting of flowcontrolenable
within the Virtual Transport configuration. See Section 11.3 Flow Control on page 112 for more information.

Type: Boolean
Range: [of£, on]
Default: of f
Count: 1

XML Format: <param name="flowcontrolenable" value="off">

Parameter value description:

Value Description

on Enable flow control with the Virtual Transport

of f Disable flow control with the Virtual Transport

8.2.9 flowcontroltokens

Defines the number of flow control tokens. This is an optional parameter used to override the default token
setting when flowcontrolenable is on. See Section 11.3 Flow Control on page 112 for more information.

Type: Unsigned 16 bit Integer
Range: [1, 65535

Default: 10

Count: 1

XML Format: <param name="flowcontroltokens" value="10">

8.3. PACKET COMPLETION RATE (0]

8.3 Packet Completion Rate

The RF Pipe Packet Completion Rate is specified as a curve defined via XML. The curve definition is com-
prised of a series of SINR values along with their corresponding probability of reception. The curve definition
must contain a minimum of two points with one SINR representing POR = 0 and one SINR representing
POR = 100. Linear interpolation is preformed when an exact SINR match is not found. Listing 8.1 shows
the default RF Pipe PCR curve file which results in the curve depicted in Figure 8.1.

Specifying a packet size (<table> attribute pktsize) in the curve file will adjust the POR based on received
packet size. Specifying a pktsize of 0 disregards received packet size when computing the POR. The POR is
obtained using the following calculation when a non-zero pktsize is specified:

POR = PORS/5°

Where,
POR, POR value determined from the PCR curve for the given SINR value
So Packet size specified in the curve file (pktsize)
S1 Received packet size

1 <?xml version="1.0" encoding="UTF-8"7>
2 <!DOCTYPE pcr SYSTEM "file:///usr/share/emane/dtd/rfpipepcr.dtd">

3 <pcr>

4 <table pktsize="0">

5 <row sinr="0.0" por="0"/>

6 <row sinr="0.5" por="2.5"/>
7 <row sinr="1.0" por="56"/>

8 <row sinr="1.5" por="7.5"/>
9 <row sinr="2.0" por="10"/>
10 <row sinr="2.5" por="12.5"/>
11 <row sinr="3.0" por="15"/>
12 <row sinr="3.5" por="17.5"/>
13 <row sinr="4.0" por="20"/>
14 <row sinr="4.5" p0r="22.5"/>
15 <row sinr="5.0" por="25"/>
16 <row sinr="5.5" por="27.5"/>
17 <row sinr="6.0" por="30"/>
18 <row sinr="6.5" por="32.5"/>
19 <row sinr="7.0" por="35"/>
20 <row sinr="7.5" por="37.5"/>
21 <row sinr="8.0" por="40"/>
22 <row sinr="8.5" por="42.5"/>
23 <row sinr="9.0" por="45"/>
24 <row sinr="9.5" por="47.5"/>
25 <row sinr="10.0" por="50"/>
26 <row sinr="10.5" por="52.5"/>
27 <row sinr="11.0" por="55"/>
28 <row sinr="11.5" por="57.5"/>
29 <row sinr="12.0" por="60"/>
30 <row sinr="12.5" por="62.5"/>
31 <row sinr="13.0" por="65"/>
32 <row sinr="13.5" por="67.5"/>
33 <row sinr="14.0" por="70"/>
34 <row sinr="14.5" por="72.5"/>
35 <row sinr="15.0" por="75"/>
36 <row sinr="15.5" por="77.5"/>
37 <row sinr="16.0" por="80"/>
38 <row sinr="16.5" por="82.5"/>
39 <row sinr="17.0" por="85"/>
40 <row sinr="17.5" por="87.5"/>
41 <row sinr="18.0" por="90"/>
42 <row sinr="18.5" por="92.5"/>
43 <row sinr="19.0" por="95"/>
44 <row sinr="19.5" por="97.5"/>
45 <row sinr="20.0" por="100“/>
46 </table>

47 </pcr>

Listing 8.1: rfpipepcr.xml

76 CHAPTER 8. RF PIPE MAC LAYER

Packet Completion Rate

&0
|

&0
|

Frobability of Reception
40

20

T T T T T
0] 10 15 20

Signal Interference/Noise Ratio

Figure 8.1: Graph of the RF Pipe Packet Completion Rate resulting from Listing 8.1.

8.4 Packet Processing Flows

The RF Pipe MAC Layer receive packet processing (upstream) flowchart is shown in Figure 8.2. The RF
Pipe MAC Layer transmit packet processing (downstream) flowchart is shown in Figure 8.3.

8.4. PACKET PROCESSING FLOWS 7

Receive Packet, Noise Floor, Frequency, Duration,
Transmit Timestamp, Progation Delay from PHY

Packet has

RF Plpe Drop .y
MAC Id? _/

Compute POR using
PCRCurve and Packet Info

POR Passed?

Promiscuous
Mode?

Packet for
this NEM?

Packet Broadcast?

%

Compute Delay using
Fixed Delay + Jitter + Propigation Delay

Y

Send Packet to Transport

Figure 8.2: RF Pipe MAC Layer receive packet processing (upstream) flow.

78

CHAPTER 8. RF PIPE MAC LAYER

/Receive Packet from Transport /

Compute Packet Duration

Y

Create Universal PHY
Tx Control Message

Override any
Tx Control
Message

values?

Update Tx Control
Message as appropriate

y

Send packet and
Tx Control Message .
to PHY Layer

Y Y

Packet
duration
expired?

Figure 8.3: RF Pipe MAC Layer transmit packet processing (downstream) flow.

8.5. DEMONSTRATIONS 79

8.5 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and

review each demonstration.

8.5.1 Demonstration 9

This demonstration deploys a seven node nine NEM centralized RF Pipe emulation experiment illustrated
in Figure 8.4. The goal of this demonstration is to become familiar with using the RF Pipe MAC Layer to

create surrogate waveform NEM definitions.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 {ode-3 node-3i node-4 node-5 {node-e node-s | node-7
NEM 1 NEM 3 NEM 3 NEM & MNEM 4 MNEM 5 NEM 6 NEM 9 NEM 7

I I I I I I I I

|
)|[0][6 @fale]e &)@

4
\\/
“

.

: i] P i

X —~ ~ ~~ —
) | ! \) L) \)) !
A N P L \

I ':\._I_/ '_/ _I T T I ._'_ _|
1 2 3 8 4 5 6 9 7
I I I | I I | I I

T
NEM 1 NEM 2 NEM 3 NEME& NEM 4 | NEM 5 NEM 6 NEM 9 NEM 7

Platform 1
node-server

Figure 8.4: Demonstration 9 - Nine node centralized RF Pipe NEM Deployment with two 2-Channel gateways.

Figure 8.5 illustrates the resulting network formed once the mobility scenario begins. In this demonstration a
SatCom Network comprised of NEMs 7, 8 and 9 is used to bridge two spectrally separated wireless networks.
Two 2-Channel gateways are used to route between the three networks. One gateway is comprised of NEMs

3 and 8, and the other is comprised of NEMs 6 and 9.

8.5.1.1 Demonstration Procedure

1. Review the Demonstration 9 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/9
[emane@emanedemo 9] less platform.xml

Review the pathloss scenario using your favorite editor. The Emulation Event Log Generator is used to
send pathloss events. See Chapter 15 Emulation Event Log Generator on page 137 for more information

on using this generator.
[emane@emanedemo 9] less scenario.eel

3. Deploy the demonstration.

[emane@emanedemo 9]1$ sudo ./lxc-demo-start.sh -d 10

CHAPTER 8. RF PIPE MAC LAYER

node-7

10.99.0.7/24

10.101.0.7/24
amane0
NEM 7

10.99.0.3/24 10.95.0.6/24
10.100.0.:;]24 10.100.0.56/24
emane :
RF Pipe SatCom emaned
MNEM 3
grrsssareasaisasssassnsssanssasiasnssasasagon : 2100 MHz NG NEM &
i : 100Kbps :

100msec delay

10.99.0.6/24

10.101.0.8/24 f
RF Pipe 2347MHz emanela 10';&;':"391’24 RF Pipe 3000 MHz
MNEM 8 MNEM 9
—Ja —ra —a —_—a
node-1 node-2 node-4 node-5
10.99.0.1/24 10.99.0.2/24 10,99.0.4/24 10.99.0.5/24
10.100.0.1/24 10.100.0.2/24 10.100.0.4/24 10.100.0.5/24
emane0 emane0 emane0 emane0
MEM 1 MEM 2 MEM 4 MEM 5

Figure 8.5: Demonstration 9 - Network Diagram. Networks in blue and red represent emulated wireless networks.

4. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

5. Connect to virtual node-1.

[emane@emanedemo 1]$ ssh node-1

6. Ping a radio in NEM 1’s network using the radio-NEMID host naming convention. Take note of the
round-trip time.

[emane@node-1 “1$ ping -c 5 radio-2

PING radio-2 (10.100.0.2) 56(84) bytes of data.

64 bytes from radio-2 (10.100.0.2): icmp_req=1 ttl=64 time=10.5 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=2 ttl=64 time=6.30 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=3 ttl=64 time=6.02 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=4 ttl=64 time=3.23 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=5 ttl=64 time=11.5 ms

--- radio-2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4012ms
rtt min/avg/max/mdev = 3.237/7.514/11.507/3.062 ms

7. Ping a radio in NEM 6’s network using the radio-NEMID host naming convention. Take note of the
round-trip time.

[emane@node-1 ~] ping -c 5 radio-6

PING radio-6 (10.100.0.6) 56(84) bytes of data.

64 bytes from radio-6 (10.100.0.6): icmp_req=1 ttl=62 time=450 ms
64 bytes from radio-6 (10.100.0.6): icmp_req=2 ttl=62 time=463 ms
64 bytes from radio-6 (10.100.0.6): icmp_req=3 ttl=62 time=448 ms
64 bytes from radio-6 (10.100.0.6): icmp_req=4 ttl=62 time=450 ms
64 bytes from radio-6 (10.100.0.6): icmp_req=5 ttl=62 time=459 ms

--- radio-6 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4004ms

8.5. DEMONSTRATIONS 81

rtt min/avg/max/mdev = 448.992/454.695/463.379/5.757 ms

8. Ping SatCom NEM-7 using 10.101.0.7. Take note of the round-trip time.

[emane@node-1 ~“]$ ping -c 5 10.101.0.7

PING 10.101.0.7 (10.101.0.7) 56(84) bytes of data.

64 bytes from 10.101.0. icmp_req=1 ttl=63 time=223 ms
64 bytes from 10.101. icmp_req=2 ttl=63 time=226 ms
64 bytes from 10.101. icmp_req=3 ttl=63 time=229 ms
64 bytes from 10.101. icmp_req=4 ttl=63 time=226 ms
64 bytes from 10.101. icmp_req=5 tt1=63 time=225 ms

ocooo
NN NN

--- 10.101.0.7 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4013ms
rtt min/avg/max/mdev = 223.509/226.485/229.760/2.115 ms

9. Stop the demonstration.

[emane@emanedemo 9]$ sudo ./lxc-demo-stop.sh

8.5.1.2 Concept Review

1. Explain the difference in the observed round-trip times from Demonstration 9.

2. What are some alternative ways the configuration for the three emulated wireless networks could have
been specified?

3. Take a look at the Transport Daemon XML used in this demonstration. What effect does the use of
the group attribute in the <transport> element of the NEM definitions for NEMs 3, 6, 8 and 9 in the
platform.zml have on the Transport Daemon XML?

82

CHAPTER 8. RF PIPE MAC LAYER

Chapter 9

IEEE 802.11abg MAC Layer

The IEEE 802.11abg MAC Layer implementation runs on top of the Universal PHY Layer and has the
objective of emulating the IEEE 802.11 MAC layer’s Distributed Coordination Function (DCF) channel
access scheme on top of the IEEE 802.11 Direct Spread Spectrum Sequence (DSS) and Orthogonal Frequency
Division Multiplexing (OFDM) signals in space. The IEEE 802.11abg MAC Layer implementation of the
Carrier Sense Multiple Access (CSMA) channel access protocol is based on applying collision effects from
one and two hop (hidden) neighbors using realtime estimation of number of neighbors and channel activity.
It is not an implementation of the protocol as defined in the IEEE 802.11 standard.

9.1

Model Features

The IEEE 802.11abg MAC Layer provides the following set of features:

1.
2.

Supports flow control as described in Section 11.3 Flow Control on page 112.
Supports the following waveform modes and data rates with the appropriate timing;:

(a) 802.11b (DSS rates: 1, 2, 5.5 and 11 Mbps)

(b) 802.11a/g (OFDM rates: 6, 9, 12, 18, 24, 36, 48 and 54 Mbps)

(c) 802.11b/g (DSS and OFDM rates)
Supports only the DCF channel access function. PCF and beacon transmissions are not supported.

Supports both unicast and broadcast transmissions. Unicast transmissions include the ability to emu-
late control message (RTS/CTS) behavior as well as retries without actually transmitting the control
messages or the re-transmission of the data message. The emulation of unicast does not replicate
exponential growth of the contention window as a result of detected failures.

Supports Wi-Fi multimedia (WMM) capabilities. The initial implementation supports the ability
to classify four different traffic classes (Background, Best Effort, Video and Voice) where the higher
priority classes (voice and video) are serviced first.

Supports user defined Packet Completion Rate (PCR) curves as a function of SINR as defined in
Section 9.3 Packet Completion Rate on page 90.

Default curves are provided for each of the supported 802.11 modulation and data rate combinations.
Default curves are based on theoretical equations for determining Bit Error Rate (BER) in an Additive
White Gaussian Noise (AWGN) channel.

The IEEE 802.11abg MAC Layer does adjust the interference on a per packet basis based on detected
collisions and as such supports negative SINR values as can be seen in the default curves.

83

84 CHAPTER 9. IEEE 802.11ABG MAC LAYER

9.2 Configuration Parameters

9.2.1 mode

Defines the 802.11 mode

Type: Unsigned 8 bit Integer
Range: o, 3]

Default: 0

Count: 1

XML Format: <param name="mode" value="0">

Parameter value description:

Value Description

0 802.11b DSSS only

1 802.11 aor g OFDM

2 802.11b DSSS only

3 802.11 b/g DSSS and OFDM

9.2.2 enablepromiscuousmode

Determines if all packets received over-the-air will be sent up the stack regardless of the destination NEM
1d.

Type: Boolean
Range: [off, on]
Default: off
Count: 1

XML Format: <param name="enablepromiscuousmode" value="off">

Parameter value description:

Value Description

on Send all packets up the stack to the transport layer
off Send only broadcast/multicast and locally addressed unicast up

9.2.3 distance

Defines the maximum distance in meters for supported point to point links within the network. This is used
to adjust the slot timing to account for round trip propagation delays.

slotTime = fizedSlotTime + propagationTime

fizedSlotTime = 9

propagationTime = distance/300

9.2. CONFIGURATION PARAMETERS 85

Type: Unsigned 32 bit Integer
Range: [1, 4294967295

Default: 1000

Count: 1

XML Format: <param name="distance" value="1000">

9.2.4 unicastrate

Defines the data rate index to be used for all unicast transmissions. The rate selection must be valid for the
mode selected as defined in the Section 9.1 Model Features on page 83.

Type: Unsigned 8 bit Integer
Range: [1, 12]

Default: 4

Count: 1

XML Format: <param name="unicastrate" value="4">

Parameter value description:

Value Description
1 Mbps
2 Mbps
5.5 Mbps
11 Mbps
6 Mbps
9 Mbps
12 Mbps
18 Mbps
24 Mbps
36 Mbps
48 Mbps
54 Mbps

© W0 N o O b W N -

e
N = O

9.2.5 multicastrate

Defines the data rate index to be used for all multicast/broadcast transmissions. The rate selection must be
valid for the mode selected as defined in the Section 9.1 Model Features on page 83.

Type: Unsigned 8 bit Integer
Range: [1, 12]

Default: 1

Count: 1

XML Format: <param name="multicastrate" value="1">

86 CHAPTER 9. IEEE 802.11ABG MAC LAYER

Parameter value description:

Value Description
1 Mbps
2 Mbps
5.5 Mbps
11 Mbps
6 Mbps
9 Mbps
12 Mbps
18 Mbps
24 Mbps
36 Mbps
48 Mbps
54 Mbps

© 0 N O oW N e

e
N =, O

9.2.6 rtsthreshold

Defines the minimum packet size in bytes required to trigger RT'S/CTS for unicast transmissions. A value of
o disables RT'S/CTS. The effect of RT'S/CTS for unicast transmissions is emulated using a statistical model.

Type: Unsigned 16 bit Integer
Range: [0, 65535]

Default: 0

Count: 1

XML Format: <param name="rtsthreshold" value="0">

9.2.7 wmmenable

Provides the ability to enable the WiFi Multimedia (WMM) type feature. Current capability supports the
ability to service packets from a higher priority queue first and does not yet support the internal contention
based logic as defined by 802.11e.

Type: Boolean
Range: [of£, on]
Default: of f
Count: 1

XML Format: <param name="wmmenable" value="off">

Parameter value description:

Value Description
on Enable WMM
of f Disable WMM

9.2. CONFIGURATION PARAMETERS 87
9.2.8 pcrcurveuri

Defines the absolute file name that contains the SINR/PCR curve values. A minimum of two SINR/PCR
row entries per data rate are required, POR = 0.0 and POR = 100.0. Entries shall be in unique ascending order
with up to two decimal places of precision for SINR. The PCR values shall represent the percentage with up
to two decimal places of precision. See Section 9.3 Packet Completion Rate on page 90 for more information.

Type: String

Range: N/A

Default: ieee80211pcr.xml
Count: 1

XML Format: <param="pcrcurveuri" value="ieee80211pcr.xml">

9.2.9 flowcontrolenable

Enables downstream traffic flow control with Virtual Transport. flowcontrolenable is only valid when us-
ing the Virtual Transport and the setting to either on or off must match the setting of flowcontrolenable
within the Virtual Transport configuration. See Section 11.3 Flow Control on page 112 for more information.

Type: Boolean
Range: [of£, on]
Default: off
Count: 1

XML Format: <param name="flowcontrolenable" value="off">

Parameter value description:

Value Description

on Enable flow control with the Virtual Transport

off Disable flow control with the Virtual Transport

9.2.10 flowcontroltokens

Defines the number of flow control tokens. This is an optional parameter used to override the default token
setting when flowcontrolenable is on. See Section 11.3 Flow Control on page 112 for more information.

Type: Unsigned 16 bit Integer
Range: [1, 65535

Default: 10

Count: 1

XML Format: <param name="flowcontroltokens" value="10">

9.2.11 queuesize

Defines the size of the queue for the given access category. When wmmenable is off only access category o is used.

88 CHAPTER 9. IEEE 802.11ABG MAC LAYER

Type: String

Range: N/A

Default: 0:255 1:255 2:255 3:255
Count: 1

XML Format: <param name="queuesize" value="0:255 1:255 2:255 3:255">

Parameter value format description:

<Access Category>:<Queue Size> [<Access Category>:<Queue Size>]...

Name Description Range

Access Category ~ The access category [o, 3]
Queue Size Queue Size [17 255]

9.2.12 cwmin

Defines the minimum contention window in slots for the appropriate access category. This value is used
when calculating the overall packet duration. When wmmenable is off only access category o is used.

Type: String

Range: N/A

Default: 0:32 1:32 2:16 3:8
Count: 1

XML Format: <param name="cwmin" value="0:32 1:32 2:16 3:8">

Parameter value format description:

<Access Category>:<Contention Window> [<Access Category>:<Contention Window>]...

Name Description Range

Access Category The access category [0, 3]

Contention Window ~Minimum contention window [1, 65535]

9.2.13 cwmax

Defines the maximum contention window in slots for the appropriate access category. Not currently used for
point-to-point failure exponential growth. When wmmenable is off only access category o is used.

Type: String

Range: N/A

Default: 0:1024 1:1024 2:64 3:16
Count: 1

XML Format: <param name="cwmax" value="0:1024 1:1024 2:64 3:16">

9.2. CONFIGURATION PARAMETERS 89

Parameter value format description:

<Adccess Category>:<Contention Window> [<Access Category>:<Contention Window>]...

Name Description Range

Access Category The access category [0, 3]
Contention Window —Maximum contention window [1, 65535]

9.2.14 aifs

Defines the Arbitration Inter Frame Space (AIFS) time factor in slots for the appropriate access category.
The inter frame space time in microseconds is computed as follows: time = aifs * slotduration + sifs, where
slotduration is a function of distance and sifs is a function of the 802.11 mode. When wmmenable is off only
access category o is used.

Type: String

Range: N/A

Default: 0:2 1:2 2:2 3:1
Count: 1

XML Format: <param name="aifs" value="0:2 1:2 2:2 3:1">

Parameter value format description:
<Access Category>:<AIFS Factor> [<Access Category>:<AIFS Factor>]...

Name Description Range
Access Category The access category o, 3]
AIFS Factor ATFS factor value in slots [0, 255]

9.2.15 txop

Defines the maximum time in microseconds a packet can reside within the queue for a given access category.
Once the packet enters the MAC queue and is not serviced for this time, it will be discarded and not trans-
mitted. Setting the value to o disables the feature and will service all packets regardless of duration in the
queue. When wmmenable is off only access category o is used.

Type: String

Range: N/A

Default: 0:0 1:0 2:0 3:0
Count: 1

XML Format: <param name="txop" value="0:0 1:0 2:0 3:0">

Parameter value format description:

<Access Category>:<Duration> [<Access Category>:<Duration>]...

Name Description Range

Access Category The access category [0, 3]

Duration txop duration in microseconds [0, 1000000]

90 CHAPTER 9. IEEE 802.11ABG MAC LAYER

9.2.16 retrylimit

Defines the number of retries permitted for the unicast messages for the appropriate access category. When
wmmenable iS off only access category o is used.

Type: String

Range: N/A

Default: 0:2 1:2 2:2 3:2
Count: 1

XML Format: <param name="retrylimit" value="0:2 1:2 2:2 3:2">

Parameter value format description:

<Access Category>:<Retry Limit> [<Access Category>:<Retry Limit>]...

Name Description Range

Access Category ~ The access category [o, 3]

Retry Limit Number of retries [0, 255]

9.3 Packet Completion Rate

The IEEE 802.11abg Packet Completion Rate is specified as curves defined via XML. The curve definitions
are comprised of a series SINR values along with their corresponding probability of reception. A curve defini-
tion must contain a minimum of two points with one SINR representing POR = 0 and one SINR representing
POR = 100. Linear interpolation is preformed when an exact SINR match is not found. Listing 9.1 shows
the default IEEE 802.11abg PCR curve file which results in the curves depicted in Figure 9.1.

Specifying a packet size (<table> attribute pktsize) in the curve file will adjust the POR based on received
packet size. Specifying a pktsize of 0 disregards received packet size when computing the POR. The POR is
obtained using the following calculation when a non-zero pktsize is specified:

POR = PORS'/5°

Where,

POR, POR value determined from the PCR curve for the give SINR value

So Packet size specified in the curve file (pktsize)

S1 Received packet size

1: <?xml version="1.0" encoding="UTF-8"7> 71:

2: <!DOCTYPE pcr SYSTEM 72: <datarate index="7" rate="12Mbps">
3: "file:///usr/local/share/emane/dtd/ieee80211pcr.dtd"> 73: <row sinr="3.0" por="0.0"/>
4: 74: <row sinr="4.0" por="14.3"/>
5: <pcr> 75: <row sinr="5.0" por="55.2"/>
6: <table pktsize="128"> 76: <row sinr="6.0" por="87.5"/>
7: <datarate index="1" rate="1Mbps"> 77 <row sinr="7.0" por="97.8"/>
8: <row sinr="-9.0" por="0.0"/> 78: <row sinr="8.0" por="99.8"/>
9: <row sinr="-8.0" por="1.4"/> 79: <row sinr="9.0" por="100.0"/>
10: <row sinr="-7.0" por="21.0"/> 80: </datarate>

11: <row sinr="-6.0" por="63.5"/> 81:

12: <row sinr="-5.0" por="90.7"/> 82: <datarate index="8" rate="18Mbps">
13: <row sinr="-4.0" por="98.6"/> 83: <row sinr="4.0" por="0.0"/>
14: <row sinr="-3.0" por="99.9"/> 84: <row sinr="5.0" por="1.7"/>
15: <row sinr="-2.0" por="100.0"/> 85: <row sinr="6.0" por="21.5"/>
16: </datarate> 86: <row sinr="7.0" por="65.0"/>
17: 87: <row sinr="8.0" por=“91.2"/>

-
©

<datarate index="2" rate="2Mbps"> 88: <row sinr="9.0" por="98.7"/>

9.4. PACKET PROCESSING FLOWS 91

19: <row sinr="-6.0" por="0"/> 89: <row sinr="10.0" por="99.9"/>
20: <row sinr="-5.0" por="1.4"/> 90: <row sinr="11.0" por="100.0"/>
21: <row sinr="-4.0" por="20.6"/> 91: </datarate>

22: <row sinr="-3.0" por="63.1"/> 92:

23: <row sinr="-2.0" por="90.5"/> 93: <datarate index="9" rate="24Mbps">
24: <row sinr="-1.0" por="98.5"/> 94: <row sinr="9.0" por="0.0"/>
25: <row sinr="0.0" por="99.9"/> 95: <row sinr="10.0" por="2.2"/>
26: <row sinr="1.0" por="100.0"/> 96: <row sinr="11.0" por="23.8"/>
27: </datarate> 97: <row sinr="12.0" por="64.4"/>
28: 98: <row sinr="13.0" por="90.4"/>
29: <datarate index="3" rate="5.5Mbps"> 99: <row sinr="14.0" por="98.4"/>
30: <row sinr="-2.0" por="0.0"/> 100: <row sinr="15.0" por="99.8"/>
31: <row sinr="-1.0" por="0.2"/> 101: <row sinr="16.0" por="100.0"/>
32: <row sinr="0.0" por="9.1"/> 102: </datarate>

33: <row sinr="1.0" por="46.2"/> 103:

34: <row sinr="2.0" por="82.8"/> 104: <datarate index="10" rate="36Mbps">
35: <row sinr="3.0" por="96.7"/> 105: <row sinr="10.0" por="0.0"/>
36: <row sinr="4.0" por="99.6"/> 106: <row sinr="11.0" por=“0.1“/>
37: <row sinr="5.0" por="100.0"/> 107: <row sinr="12.0" por="4.6"/>
38: </datarate> 108: <row sinr="13.0" por="32.4"/>

39: 109: <row sinr="14.0" por="72.8"/>

40: <datarate index="4" rate="11Mbps"> 110: <row sinr="15.0" por="93.4"/>
41: <row sinr="1.0" por="0.0"/> 111: <row sinr="16.0" por="99.0"/>
42: <row sinr="2.0" por="0.2"/> 112: <row sinr="17.0" por="99.9"/>
43: <row sinr="3.0" por="8.9"/> 113: <row sinr="18.0" por="100.0"/>
44 <row sinr="4.0" por="45.8"/> 114: </datarate>

45: <row sinr="5.0" por="82.5"/> 115:

46: <row sinr="6.0" por="96.7"/> 116: <datarate index="11" rate="48Mbps">
a7: <row sinr="7.0" por="99.6"/> 117: <row sinr="16.0" por="0.0"/>
48: <row sinr="8.0" por="100.0"/> 118: <row sinr="17.0" por="1.3"/>
49: </datarate> 119: <row sinr="18.0" por="15.8"/>
50: 120: <row sinr="19.0" por="53.5"/>
51: <datarate index="5" rate="6Mbps"> 121: <row sinr="20.0" por="84.9"/>
52: <row sinr="-2.0" por="0.0"/> 122: <row sinr="21.0" por="96.8"/>
53: <row sinr="-1.0" por="5.5"/> 123: <row sinr="22.0" por="99.6"/>
54: <row sinr="0.0" por="39.8"/> 124: <row sinr="23.0" por="100.0"/>
55: <row sinr="1.0" por="79.0"/> 125: </datarate>

56: <row sinr="2.0" por="96.0"/> 126:

57: <row sinr="3.0" por="99.5"/> 127: <datarate index="12" rate="54Mbps">
58: <row sinr="4.0" por="100.0"/> 128: <row sinr="17.0" por="0.0"/>
59: </datarate> 129: <row sinr="18.0" por="0.2"/>
60: 130: <row sinr="19.0" por="5.7"/>
61: <datarate index="6" rate="9Mbps"> 131: <row sinr="20.0" por="32.4"/>
62: <row sinr="-1.0" por="0.0"/> 132: <row sinr="21.0" por="71.3"/>

63: <row sinr="0.0" por="0.3"/> 133: <row sinr="22.0" por="92.4"/>
64: <row sinr="1.0" por="10.5"/> 134: <row sinr="23.0" por="99.9"/>
65: <row sinr="2.0" por="50.3"/> 135: <row sinr="24.0" por="100.0"/>
66: <row sinr="3.0" por="84.9"/> 136: </datarate>

67: <row sinr="4.0" por="97.5"/> 137: </table>

68: <row sinr="5.0" por="99.7"/> 138: </pcr>

69: <row sinr="6.0" por="100.0"/>

70: </datarate>

Listing 9.1: ieee80211pcr.xml

9.4 Packet Processing Flows

The IEEE 802.11 MAC Layer receive packet processing (upstream) flowchart is shown in Figure 9.2 and
Figure 9.3. The IEEE 802.11 MAC Layer transmit packet processing (downstream) flowchart is shown in
Figure 9.4.

92

o
S 4
c
=]
=
o |
L e
i}
i
B
=
Z o
T v
B8
e
o
o
&

/ | [f
(| [[| m & mpps
| | [| ® 9meps
f || ®m 12 Mbps
[m 18 M
| 24 s
W 35 bps
| 48 Mops
I | m 54 Mbps

25

Signal Interference/Noise Ratio

Probability of Reception

CHAPTER 9. IEEE 802.11ABG MAC LAYER

100
1

B0
|

40

20

o

Signal Interference/Noise Ratio

Figure 9.1: Graph of the IEEE 802.11abg Packet Completion Rate resulting from Listing 9.1.

Receive Packet, Noise Floor, Frequency, Duration,
Transmit Timestamp, Progation Delay from PHY

Packet has
|IEEE 802.11abg
MAC 1d?

CTS
Control
Packet?

Update Control
Channel Activity

End

Unicast

Unicast
(no RTS) or
Broadcast
Data?

Packet for

this NEM?
h
- Update Data
1 channel Activity

Send CTS

Figure 9.2: Part 1 - IEEE 802.11abg MAC Layer receive packet processing (upstream) flow.

9.4. PACKET PROCESSING FLOWS

Get Channel Activity
Data Based on Source

!

Set Retry Counter

Probablity of alocal Tx
occuring during Rx

Max
Retries?

Esitmated Common/Hidden
Meighbors and Bandwidth
Lkilization

Probablity of a Rx from a Hidden
Neighbor occuring during Rx

Probablity of a Tx from a Hidden
Neighbor eccuring during Rx

Node

Collision
Hidden
Neighbor?

Add Noise from Hidden
Neighbor to Noise Floor

Probablity of a Tx from a Common
Neighber oceuring during Rx

Collision
Common
Neighbor?

Add Noise from Common
Neighbor to Noise Floor

Compute POR using
PCRCurve and Packet Info

Packet
Received?

Duplicate
Packet?

1

I Send Neighbor Event |

0

| Update 1-Hop Neighbor List I

Source in 1-Hop
Neighbor List?

93

Schedule Packet for
delivery to Transport

h

Set Delay Time
(duration + EoT of previous Packet)

Packet for
this NEM
or Broadcast?

Mode?

Figure 9.3: Part 2 - IEEE 802.11abg MAC Layer receive packet processing (upstream).

Promiscuous

CHAPTER 9. IEEE 802.11ABG MAC LAYER

. Dequeue Downstream Packet
Receive Packet from Transport based on DSCP priority

Y

Create Queue Entry
based on DSCP

Tx Operation
Expired?

A4

Enqueue Packet and signal
Downstream Queue Process

Compute Message Duration
End Fn(mode,rate,size,type)

Y

Get Channel Estimated neighbors and bandwidth
Activity Data utilization used to compute Tx delays
Y

Compute Pre and
Post TX delays

A
-
4

Pre Tx
Delay
Expired?

Wait for Pre Tx Delay

Send Packet to PHY Layer

Appends proper IEEE MAC Header based on

packet type: broadcast, unicast wf RTS,
¢ unicast wjo RTS

Update Channel Activity Database

A

Post Tx
Delay
Expired?

Wait for Post Tx Delay

Figure 9.4: TEEE 802.11abg MAC Layer transmit packet processing (downstream) flow.

9.5. DEMONSTRATIONS 95

9.5 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

9.5.1 Demonstration 10

This demonstration deploys a four node centralized IEEE 802.11abg and RF Pipe emulation experiment il-
lustrated in Figure 9.5. The goal of this demonstration is to become familiar with using the IEEE 802.11abg
MAC Layer and to understand its noise processing capabilities.

Virtual Virtual Virtual Virtual
Transport Transport Transport Transport
node-1 node-2 node-3 node-4
MNEM 1 MNEM 3 MNEM 3 MNEM 4

!
NEM 1 NEM 2 NEM 3 NEM 4

Platform 1
node-server

Figure 9.5: Demonstration 10 - Four node centralized IEEE802.11abg and RF Pipe NEM deployment.

In this demonstration NEMs 1 and 2 are IEEE 802.11abg instances and NEMs 3 and 4 are RF Pipe instances.
All NEMs are using the same frequency in order to demonstrate the noise processing features of the IEEE
802.11abg MAC Layer.

Six MGEN flows are used to illustrate the noise processing functionality:

1. NEM 1 sends 10.24Kbps (128 byte packet x 10 per second) to NEM 2. With no noise 100% completion
will result.

2. NEM 1 sends 81.92Kbps (1024 byte packet x 10 per second) to NEM 2. With no noise 100% completion
will result.

3. NEM 1 sends 10.24Kbps (128 byte packet x 10 per second) to NEM 2 while NEM 3 sends 1.23Mbps
(1024 byte packet x 150 per second) to NEM 4. NEM 3’s transmissions will result in an increase in
the Noise Floor and an SINR of -6db. This will result in approximately 63.5% completion.

4. NEM 1 sends 81.92Kbps (1024 byte packet x 10 per second) to NEM 2 while NEM 3 sends 1.23Mbps
(1024 byte packet x 150 per second) to NEM 4. The change in packet size will result in a completion
rate of approximately 2.6%.

5. NEM 1 sends 10.24Kbps (128 byte packet x 10 per second) to NEM 2 while NEM 4 sends 1.23Mbps
(1024 byte packet x 150 per second) to NEM 3. Switching the transmitter to NEM 4 changes the SINR
to -5dB. This will result in approximately 90% completion.

96 CHAPTER 9. IEEE 802.11ABG MAC LAYER

6. NEM 1 sends 81.92Kbps (1024 byte packet x 10 per second) to NEM 2 while NEM 4 sends 1.23Mbps
(1024 byte packet x 150 per second) to NEM 3. This will result in approximately 456% completion.

9.5.1.1 Demonstration Procedure

1. Review the Demonstration 10 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/10
[emane@emanedemo 10] less platform.xml

2. Review the MGEN input files using your favorite editor.
[emane@emanedemo 12] less mgen*

3. Deploy the demonstration.
[emane@emanedemo 10]$ sudo ./lxc-demo-start.sh

4. This demonstration will run a short experiment and then display the results.

Waiting for experiment completion...................., done.

Flow 1 2 3 4 5 6

Tx 1 190 201 302 201 201 201
Rx 2 190 201 193 12 175 87

Comp’ 100.00 100.00 63.91 5.97 87.06 43.28

5. Stop the demonstration.

[emane@emanedemo 10]$ sudo ./lxc-demo-stop.sh

9.5.1.2 Concept Review

1. How does the change in packet size between flow 3 and 4 and flow 5 and 6 affect the POR?
2. What completion rates would be expected if NEM 3 and NEM 4 switched frequencies?

Chapter 10

Comm Effect Shim Layer

The Comm Effect model provides the ability to control network impairments commonly provided via tradi-
tional commercial network emulators on a per link basis. The Comm Effect model is a Shim only unstructured
NEM implementation.

10.1 Model Features

The Comm Effect model provides the ability to define the following network impairments:
o Loss: The percentage of packets that will be dropped utilizing a uniform loss distribution model.

o Latency: The average delay for a packet to traverse the network. The total delay is composed of a fixed
and variable component. The fixed amount of the delay is defined via a 1atency configuration parameter
and the variable amount via a jitter configuration parameter The jitter is determined randomly using
a uniform random distribution model around +/- jitter. The randomly generated jitter value is then
added to the fixed latency to determine the total delay.

e Duplicates: The percentage of packets that will be duplicated at the receiver.
e Unicast Bitrate: The bitrate for packets destined for the NEM or handled in promiscuous mode.
o Broadcast Bitrate: The bitrate for packets destined for the NEM broadcast address.

The network impairments defined above can be controlled via two mechanisms: Comm FEffect Events and
static filter based impairments. See Chapter 16 Comm Effect Event Generator on page 141 for more infor-
mation on event based network impairments.

10.2 Configuration Parameters

10.2.1 defaultconnectivity

Defines the default communication effects of all NEMs at start up prior to receiving any Comm Effect events.
All filter rules, if any, are still processed regardless of whether defaultconnectivity is in use.

97

98 CHAPTER 10. COMM EFFECT SHIM LAYER

Type: Boolean
Range: [of£, on]
Default: on
Count: 1

XML Format: <param name="defaultconnectivity" value="on">

Parameter value description:

Value Description

on All NEMS are allowed to communication without first receiving comm effect event data

off No NEMS are allowed to communication without first receiving comm effect event data

10.2.2 filterfile

The name of the Comm Effect filter file to load. The filter file must be a fully qualified URI (absolute file
name).

Type: String
Range: N/A
Default: None
Count: 1

XML Format: <param name="filterfile" value="file:///etc/emane/filterfile.xml">

10.2.3 groupid

Defines the NEM Group Id which will be used to group NEMs by the assigned Id value. When an NEM is
assigned to a group it can only receive traffic from other members of the same group regardless of commu-
nication effects. If set to o the NEM is not associated with an NEM Group. If set to a value greater than o
the NEM is associated with the NEM Group of the same value.

Type: Unsigned 32 bit Integer
Range: [0, 4294967295

Default: None

Count: 1

XML Format: <param name="groupid" value="0">

10.2.4 enablepromiscuousmode

Determines if all packets received over-the-air will be sent up the stack regardless of the destination NEM
1d.

Type: Boolean
Range: [of£, on]
Default: off
Count: 1

XML Format: <param name="enablepromiscuousmode" value="off">

10.3. STATIC FILTERS 99

Parameter value description:

Value Description

on Send all packets up the stack to the Transport Layer

off Send only broadcast/multicast and locally addressed unicast up

10.2.5 enabletighttimingmode

Determines whether transmission time of the packet will be factored in when calculating delivery scheduling
time. When enabled, tight time sync will be required for all platforms in the EMANE deployment containing
Comm Effect NEM instances.

Type: Boolean
Range: [of£, on]
Default: off
Count: 1

XML Format: <param name="enabletighttimingmode" value="off">

Parameter value description:

Value Description

on Factor in transmission time of the packet when calculating delivery scheduling time

off Ignore transmission time of the packet when calculating delivery scheduling time

10.2.6 receivebufferperiod

Specify the max sum of buffering time in seconds for packets received from an NEM. The buffering interval
for each packet is determined by the bitrate for the source NEM and packet size. Packets are then placed in
a timed queue based on this interval and any packets that would cause the receive buffer period to be ex-
ceeded are discarded. A value of 0.0 disables the limit and allows all received packets to stack up in the queue.

Type: Float

Range: [0.0, MAX_FLOAT]
Default: 1.0

Count: 1

XML Format: <param name="receivebufferperiod" value="1.0">

10.3 Static Filters

In addition to the event based network impairments, the Comm Effect model provides the ability to define
static filters to control network impairments. Filters are defined via an XML configuration file and have the
following characteristics:

1. The filter file used by a given NEM within the emulation is identified at initialization time via the
NEM’s filterfile configuration parameter. Each filter defined in the filterfile is characterized by one
or more target elements and a single effect element.

100

CHAPTER 10. COMM EFFECT SHIM LAYER

2. Currently only IPv4 Ethernet packet filter targets are supported. The target element has the following
format within the filter XML file:

<target>
<ipv4 src=’0.0.0.0’ dst=’0.0.0.0’ len=’0’ ttl=’0’ tos=’0’>

<udp sport=’0’ dport=’0’/>
<protocol type=’0’/>

</ipv4>
</target>

3. All of the IPv4 attributes are optional:

(a)

src - Source address in IPv4 header. Valid range 0.0.0.0 - 255.255.255.255, where 0.0.0.0 implies
don’t care.

dst - Destination address in IPv4 header. Valid range 0.0.0.0 - 255.255.255.255, where 0.0.0.0
implies don’t care.

len - Total length in IPv4 header. Valid range 0 - 65535, where O implies don’t care.
ttl - Time to live in IPv4 header. Valid range 0 - 255, where 0 implies don’t care.

tos - Type of Service/Differentiated Services in IPv4 header. Valid range 0 - 255, where 0 implies
don’t care.

In addition, a filter can be defined via the IPv4 protocol field in the header. The communication
protocol can be defined by a name or numerical value. Currently, udp is the only protocol that can be
defined by name. All other protocols must be identified via numerical value.

(f)

(2)

udp - Used to identify UDP protocol by name. When using this mechanism to define the udp
protocol, sport and/or dport can also be identified for the udp protocol header. The valid range
for sport and dport are 0 to 65535, where 0 implies don’t care.

<target>
<ipv4 dst=’224.1.2.3°>
<udp sport=’12345’ dport=’12346’/>
</ipvé4>
</target>

protocol - Used when identifying the communication protocol based on numerical value. The type
attribute identifies the numerical value for the IPv4 communication protocol with a valid range
from 0 to 255.

<target>
<ipvd dst=’224.1.2.37/>
<protocol type=’89’/>

</ipv4>

</target>

4. Each filter is assigned static network impairments (loss, latency, jitter, duplicates, unicastbitrate and
broadcastbitrate).

<eff
<1

ect>
08s8>20</loss>;

<duplicate>0</duplicate>

<1
<J

atency sec=’0’ usec=’200000’/>
itter sec=’0’ usec=’0’/>

<unicastbitrate>8096</unicastbitrate>
<broadcastbitrate>1024</broadcastbitrate>

</ef

fect>

The effect element has the following format:

(a)

loss - The loss 0 to 100 in percentage to be applied to the packets that match the associated
target.

10.3. STATIC FILTERS 101

(b)

(f)

duplicate - The duplicates 0 to 100 in percentage to be applied to the packets that match the
associated target.

latency - The fixed average delay to be applied to the packets that match the associated target.
sec - Seconds have a valid range 0 to 65535. usec -Microseconds have a valid range 0 to 999999.

jitter - The random variation applied to the packets that match the associated target. sec -
Seconds have a valid range 0 to 65535. usec - Microseconds have a valid range 0 to 999999.

unicastbitrate - The bitrate (bps) applied to packets addressed to the NEM or received in promis-
cuous mode matching the associated target. The bitrate has a valid range from 0 meaning unused
to max unsigned 64 bit number.

broadcastbitrate -The bitrate (bps) applied to packets addressed to the NEM broadcast address
matching the associated target. The bitrate has a valid range from 0 meaning unused to max
unsigned 64 bit number.

5. The filters and their associated impairments are defined at initialization and cannot be altered during
emulation.

6. Filter ordering determines the network impairment and as such, more specific filters should be defined

first.

Each received packet is evaluated against the defined filters in order and the first match deter-

mines the impairment to be applied. For example, in the sample filter file shown in Listing 10.1, a
packet as it is received by a node will be evaluated against each of the four filters (OSPF, TOS, UDP,
DEFAULT) in order and the respective effect will be applied based on the first match.

It should be noted that the inclusion of the perauLT filter should only be used when Comm Effect
events are not being utilized since the filters take precedence. When filters are used in conjunction
with Comm Effect events, the event driven impairments serve as the default effect for all packets that
do not match a filter target.

<?xml version=’1.0’ encoding=’UTF-8’7>
<!DOCTYPE commeffect system "file:///usr/share/emane/commefect/dtd/commeffectfilters.dtd">
<commeffect >

<filter>

<description>0SPF Packets</description>

<target >
<ipvé4>

<protocol type="89"/>
</ipvéd>
</target>

<effect>

<loss>0</loss>

<duplicate>0</duplicate>

<latency sec=’0’ usec=’0’/>

<jitter sec=’0’ usec=’0’/>
</effect>

</filter>

<filter>

<description>T0S (Type of Service) = 192</description>

<target>

<ipv4 tos=’192’>
</ipvé4>
</target>

<effect>

<loss>10</loss>

<duplicate>150</duplicate>

<latency sec=’0’ usec=’100000’/>

<jitter sec=’0’ usec=’0’/>
</effect>

</filter>

<filter>

<description>UDP Multicast (destination address = 224.1.2.3 and destination port = 12345)</description>

<target>

<ipvé4 dst=’224.1.2.3°>

102 CHAPTER 10. COMM EFFECT SHIM LAYER

<udp dport=’12345’/>
</ipvéd>
</target>
<effect>
<loss>20</loss>
<duplicate>0</duplicate>
<latency sec=’0’ usec=’200000"/>
<jitter sec=’0’ usec=’0’/>
</effect>
</filter>
<filter>
<description>DEFAULT: All Other Packets</description>
<target/>
<effect>
<loss>40</loss>
<duplicate>30</duplicate>
<latency sec=’0’ usec=’600000’/>
<jitter sec=’0’ usec=’100000’/>
<unicastbitrate >8096</unicastbitrate>
<broadcastcastbitrate >8096</broadcastcastbitrate>
</effect>
</filter>
</commeffect>

Listing 10.1: Comm Effect Filter sample.

10.4 Packet Processing Flows

The Comm Effect Shim Layer receive packet (upstream) processing flowchart is shown in Figure 10.1 and
Figure 10.2. The Comm Effect Shim Layer does not perform any relevant transmit packet (downstream)
processing.

/ Receive OTA Packet/

CommeEffect is not a radio model but a Common PHY Header
must be used in order to support heterogenous deployments.
Only the PHY Registration |d, Tx Time, and Sequence Number
header fields are set,

Packet has
CommeEffect
PHY
Registration Id?

Promiscuous
Mode?

Packet for
this NEM?

Packet Broadcast?

Figure 10.1: Part 1 - Comm Effect Shim Layer receive packet (upstream) processing flow.

10.4. PACKET PROCESSING FLOWS

Default
Connectivity
Mode?

Figure 10.2: Part 2 - Comm Effect Shim Layer receive packet (upstream) processing flow.

Send Packet to Transport |«—

CommeEffect
Profile Data
avaialble?

Retrieve CommEffect Profile Data

Receive
Processing
Queue
full?

1 or more packets
received after

Loss/Duplication
probablity?

based on profile latency, jitter and datarate

Calculate Delivery time of each packet

i
-

Delivery
time
expired?

103

104 CHAPTER 10. COMM EFFECT SHIM LAYER

10.5 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and

review each demonstration.

10.5.1 Demonstration 11

This demonstration deploys a ten node distributed Comm Effect emulation experiment illustrated in Fig-
ure 10.3. The goal of this demonstration is to become familiar with using the Comm Effect Model and the

Comm Effect Controller application.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10
NEM 1 NEM 3 NEM 3 NEM 4 NEM 5 NEM 6 NEM 7 NEM 8 NEM 3 NEM 10

I I I I I I | I
N\ N N N
> | @ > <6> @ B «@ > || 49

/
4
/ 4

\ g
a

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform 6 Platform 7 Platform 8 Platform 9 Platform 10
NEM 1 NEM 2 NEM 3 MNEM 4 MEM & MNEM & NEM 7 NEM & NEM 9 NEM 10
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

Figure 10.3: Demonstration 11 - Ten node distributed Comm Effect NEM deployment.

10.5.1.1 Demonstration Procedure

1. Review the Demonstration 11 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/11
[emane@emanedemo 11] less platform.xml

2. Deploy the demonstration.
[emane@emanedemo 11]$ sudo ./lxc-demo-start.sh

3. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

4. Open the Comm Effect Controller application. From the top panel select Comm Effect Controller from
the same launcher used for OLSR Viewer.

5. Create a new project. File — New. See Figure 10.4.
(a) Set the Project Name to demo1t.
(b) Set the number of nodes to 10.

(¢) Verify Event Channel IP is 224.1.2.8.

10.5. DEMONSTRATIONS 105

(d) Verify Event Channel Port is 45703.
(e) Verify Event Channel NIC is bro.

Create New Comm Effect Project

Enter the parameters for the new project

Project Name: W
Node Entry Count: m
Event Channel IF: W
Event Channel Port W

Event Channel NIC:

oK || Cancel |

Figure 10.4: Demonstration 11 - Comm Effect Controller New Project dialog.

6. Experiment with modifying the Comm Effect scenario. Select an individual matrix entry to modify
the effect between two nodes and try the Quick Fill Panel interface. See Figure 10.5 and Figure 10.6.

Enter Comm Effect Values x
Node 5 to Node 7 Node 7 to Node 5
Latency: ,Oi Secs m HSecs Latency: secs Hsecs
Jitter: ,Oi Secs M H5ecs Jitter: se(s HSecs
Loss: 13 % Loss: %
Duplicate: |2 % Duplicate: %
Unicast Rate: ,Oi bps Unicast Rate: bps
Broadcast Rate: IO— bps Broadcast Rate: bps

Figure 10.5: Demonstration 11 - Comm Effect Controller Effect Entry dialog.

Quick Fill Panel
Latency: | | secs | | psecs []
Jitter: | | secs | | psecs []
Loss: 50 %
Duplicate: %]
Unicast Rate: bps O
Broadcast Rate: bps |
Apply all []

| Quick Fill ||AIINDdes -~

Figure 10.6: Demonstration 11 - Comm Effect Controller Quick Fill Panel.

7. Quick Fill all nodes to 50% loss and publish the scenario entry. Quick Fill Panel: Loss 50 — Quick Fill —
Enter Playback Mode — Play.

8. Observe what happens to the network using the OLSR Viewer Visualization Panel.

106 CHAPTER 10. COMM EFFECT SHIM LAYER

9. Stop the demonstration.

[emane@emanedemo 11]$ sudo ./lxc-demo-stop.sh

10.5.1.2 Concept Review

1. Why was bro used as the Event Channel device for this demonstration?
2. Is the Comm Effect Shim a radio model?
3. What are Comm Effect filters?

Part 111

Transports

107

Chapter 11

Virtual Transport

The Virtual Transport creates a virtual interface for use as the emulation/application domain boundary.
IP packets routed to the virtual device are encapsulated and transmitted to their respective NEM layer for
downstream processing. Packets received over-the-air are processed up the NEM layer stack and transmitted
to the NEM’s respective virtual transport for injection back into the kernel IP stack. The newly created
virtual interface is assigned an Ethernet address derived from the NEM Id associated with the transport
using the following format: 02:02:00:00:xX:XX, where xx:xx is the 16 bit NEM Id. This allows easy mapping of
Ethernet MAC addresses to NEM Ids for unicast frames. Multicast and broadcast frames map to the NEM
broadcast address 0xFFFF.

11.1 Transport Features

Virtual Transport capabilities include the following:

e IPv4 and IPv6 Capable - Supports IPv4 and IPv6 virtual interface address assignments and packet
processing.

e Flow Control - Supports flow control with a corresponding flow control capable NEM layer in order to
provide feedback between the emulation stack and application domain socket queues.

e Virtual Interface Management - Supports configuring virtual interface addresses or can be configured
to allow virtual interfaces to be managed externally, for example via DHCP.

e Raw Transport Interoperability - Supports interoperability with Raw Transport emulation/application
domain boundaries using ARP caching to learn network/NEM Id associations.

¢ Bitrate Enforcement - Supports bitrate enforcement for use with models that do not limit bitrate based
on emulation implementation.

e Broadcast Only Mode - Supports forced NEM broadcasting of all IP packet types: unicast, broadcast
and multicast.

11.2 Configuration Parameters

11.2.1 address

Virtual device address. Supports IPv4 and IPv6.

109

110 CHAPTER 11.

Type: String
Range: N/A
Default: None
Count: 1

XML Format: <param name="address" value="172.30.1.1">

11.2.2 arpcacheenable

Enable ARP request/reply monitoring to map ethernet address to NEM.

Type: Boolean
Range: [of£, on]
Default: on
Count: 1

XML Format: <param name="arpcacheenable" value="on">

Parameter value description:

Value Description
on Enables ARP caching
off Disabled APR caching

11.2.3 arpmode

Enable ARP on the virtual device.

Type: Boolean
Range: [of£, on]
Default: on
Count: 1

XML Format: <param name="arpmode" value="on">

Parameter value description:

Value Description

on Enables ARP on virtual device
off Disables APR on virtual device

11.2.4 bitrate

VIRTUAL TRANSPORT

Transport bitrate in Kbps. This is the total allowable throughput for the transport combined in both direc-

tions (upstream and downstream). A value of o disables the bitrate feature.

11.2. CONFIGURATION PARAMETERS 111

Type: Unsigned 64 bit Integer
Range: [0, 18446744073709551]
Default: 0

Count: 1

XML Format: <param name="bitrate" value="0">

11.2.5 broadcastmode

Broadcast all packets to all NEMs.

Type: Boolean
Range: [o££, on]
Default: on
Count: 1

XML Format: <param name="broadcastmode" value="off">

Parameter value description:

Value Description
on Enables broadcasting of all packets to all NEMs
off Disables broadcasting of all packets to all NEMs

11.2.6 device

Virtual device name. Note: On OS X this must be tapo.

Type: String
Range: N/A
Default: emane0
Count: 1

XML Format: <param name="device" value="emane0">

11.2.7 devicepath

Path to the tap device.

Type: String

Range: N/A

Default (Linux): /dev/net/tun

Default (OS X): /dev/tap0

Default (Win32): SYSTEM\CurrentControlSet\Control\Network\{4D36E972-E325-11CE-BFC1-08002BE10318}
Count: 1

XML Format: <param name="devicepath" value="/dev/net/tun">

112 CHAPTER 11. VIRTUAL TRANSPORT

11.2.8 flowcontrolenable

Enables downstream traffic flow control with a corresponding flow control capable NEM layer. The flowcon-
trolenable parameter must match the setting of the corresponding NEM layer’s lowcontrolenable parameter.
See Section 11.3 Flow Control on page 112 for flow control details.

Type: Boolean
Range: [o££, on]
Default: off
Count: 1

XML Format: <param name="flowcontrolenable" value="off">

Parameter value description:

Value Description

on Enable flow control with a flow control capable NEM layer

off Disable flow control

11.2.9 nmask

Virtual device network mask. Supports IPv4 and IPv6.

Type: String
Range: N/A
Default: None
Count: 1

XML Format: <param name="mask" value="255.255.255.0"">

11.3 Flow Control

The Virtual Transport supports flow control using a token based exchange mechanism performed in coordi-
nation with a corresponding NEM layer. A flow control token is a packet transmission unit where a single
token represents permission for the transport to transmit a single packet downstream to a coordinating NEM
layer. The standard EMANE distribution contains two NEM layers capable of performing flow control with
the Virtual Transport: RF Pipe MAC Layer and IEEE 802.11abg MAC Layer. Flow control must be enabled on
both the transport and the coordinating flow control capable NEM layer using the flowcontrolenable config-
uration parameter (See Sections 8.2.8 11.2.8 9.2.9).

The number of tokens available is specified using the flowcontroltokens configuration item available for both
the RF Pipe Mac Layer (See Section 8.2.9) and the IEEE 802.11abg MAC Layer (See Section 9.2.10). Once
started, a flow control enabled layer sends a control message to the Virtual Transport specifying the number
of tokens available and then waits for the transport to acknowledge receipt of the token count. Any down-
stream packets received from the transport in the period between when the token count control message is
sent and the acknowledgment is received are discarded.

When the Virtual Transport starts, it sends a control message to the flow control enabled layer request-
ing the current token count. No downstream packets are transmitted to the flow control enabled layer until
the flow control token count control message is received. Once received, the transport will send an ac-
knowledgment control message. This acknowledgment will satisfy the flow control enabled component in the

11.4. PACKET PROCESSING FLOWS 113

situation where it was started prior to the transport and was blocked waiting for a previous acknowledgment.

The Virtual Transport decrements its token count each time it sends a downstream packet. When the
token count reaches zero no further packets are transmitted causing application socket queues to backup.
The flow control enabled layer shadows the token count of the transport in order to detect when the transport
has run out of tokens. Once available, the flow control enabled layer will send a flow control token count
message restarting the process.

Using this method, either flow control component, the Virtual Transport or the coordinating layer, can
restart any number of times and the token count will resync automatically.

11.4 Packet Processing Flows

The Virtual Transport receive packet (upstream) processing flowchart is shown in Figure 11.1. The Virtual
Transport transmit packet (downstream) processing flowchart is shown in Figure 11.2.

/ Receive Packet from NEM Layer /

Is frame
IPv4 or IPv6
or ARP?

ARP Cache
Mode?

Update ARP Cache

Y

Write frame to TunTap Device

Bitrate
enabled?

Bits availible
to drain?

Figure 11.1: Virtual Transport receive packet (upstream) processing flow.

114 CHAPTER 11. VIRTUAL TRANSPORT

/ Receive Packet from TunTap Device /

Is frame
IPv4 or IPv6?

Derive DSCP from IP TOS field | | Use DSCP 0 |

Broadcast
Mode?

ARP Cache
Mode?

NEM destination =
Last 2 bytes of Ethernet Dest

Is Broadcast
or Multicast?

NEM destination =
NEM_BROADCAST_ADDR

IP Destination
in ARP Cache?

NEM destination =
NEM_BROADCAST_ADDR

NEM destination =
MNEM Cache Entry

No Flow control

enabled?

No
Token
available?

3 Send Packet Downstream
to NEM Layer

Bitrate
enabled?

Bits availible
to drain?

Figure 11.2: Virtual Transport transmit packet (downstream) processing flow.

11.5. DEMONSTRATIONS 115

11.5 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and

review each demonstration.

11.5.1 Demonstration 12

This demonstration deploys a ten node centralized RF Pipe emulation experiment illustrated in Figure 11.3.
The goal of this demonstration is to become familiar with using the Virtual Transport and its flow control
capability.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10
NEM 1 MNEM 3 MNEM 3 NEM 4 NEM 5 NEM 6 NEM 7 NEM 8 MNEM 9 MEM 10

I | I I | |
N N A A a
D D G| @D é & || @o
// //) 4 </ 7 M/
(J:j 'J:I (I\/ I\;,fl

.
-
”

Q) H

¢ 8 ,\’ N 4 \101
4 N YV

-

<

<

—_— o_
4
s
p
<
p
L

H -
L

| I I | I I I | I I
NEM 1 NEM 2 NEM 3 NEM 4 NEM 5 II NEM 6 NEM 7 NEM & NEM S NEM 10

Platform 1
node-server

Figure 11.3: Demonstration 13 - Ten node centralized RF Pipe NEM deployment.

In this demonstration NEMs 1 - 5 have flow control enabled and NEMs 6 - 10 have flow control disabled.
NEM 1 will send approximately 1.5Mbps worth of traffic to NEM 2 and NEM 6 will send at the same rate

to NEM 7.

11.5.1.1 Demonstration Procedure

1. Review the Demonstration 12 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/12
[emane@emanedemo 12] less platform.xml

2. Review the MGEN input files using your favorite editor.
[emane@emanedemo 12] less mgenx

3. Deploy the demonstration.
[emane@emanedemo 12]$ sudo ./lxc-demo-start.sh

4. This demonstration will run a short experiment and then display the results.
Waiting for experiment completion...........................

Flow Control On - Node 1 sent 2864 packets and Node 2 received 2864 packets

Flow Control 0ff - Node 6 sent 3516 packets and Node 7 received 2533 packets

116 CHAPTER 11. VIRTUAL TRANSPORT

5. Stop the demonstration.

[emane@emanedemo 12]$ sudo ./lxc-demo-stop.sh

11.5.1.2 Concept Review

1. What accounts for the difference in the number of packets sent and received by the two pairs of nodes?

Chapter 12

Raw Transport

The Raw Transport uses a specific network interface as the application/emulation boundary. IP packets
read from the interface are encapsulated and transmitted to their respective NEM. Packets received OTA for
upstream processing, either from another platform internal NEM or an NEM contained in another platform,
are processed by the PHY Layer and MAC Layer and transmitted to the NEM’s respective Raw Transport
for transmission out the specified network interface.

12.1 Configuration Parameters

12.1.1 bitrate

Transport bitrate in Kbps. This is the total allowable throughput for the transport combined in both direc-
tions (upstream and downstream). A value of o disables the bitrate feature.

Type: Unsigned 64 bit Integer
Range: [0, 18446744073709551]
Default: 0

Count: 1

XML Format: <param name="bitrate" value="0">

12.1.2 broadcastmode

Broadcast all packets to all NEMs.

Type: Boolean
Range: [of£, on]
Default: on
Count: 1

XML Format: <param name="broadcastmode" value="off">

117

118 CHAPTER 12. RAW TRANSPORT

Parameter value description:

Value Description
on Enables broadcasting of all packets to all NEMs
off Disables broadcasting of all packets to all NEMs

12.1.3 arpcacheenable

Enable ARP request/reply monitoring to map Ethernet address to NEM.

Type: Boolean
Range: [o££, on]
Default: on
Count: 1

XML Format: <param name="arpcacheenable" value="on">

Parameter value description:

Value Description
on Enables ARP caching
off Disabled APR caching

12.1.4 device

Device to use as the raw packet entry point. Once a network device has been dedicated to a Raw Transport it
should not be used for any other communication other than what should be routed into the emulation domain.

Type: String
Range: N/A
Default: N/A
Count: 1

XML Format: <param name="device" value="ethO">

12.2 Transport Interoperability

There is no guarantee that heterogeneous transports can be used in a given deployment. The Transport
API is designed to allow transports to transmit opaque data to and from their respective NEM stacks. The
format of the data is implementation dependent. It is up to individual transport implementations to take
the appropriate steps necessary to allow for compatibility with transports of similar types.

Both the Virtual Transport and Raw Transport route Ethernet frames. There are two configuration op-
tions that will allow both transports to communicate with each other.

The first option is to use the ARP cache feature of both transports. When enabled, each transport will
peek at all ARP response packets that are sent upstream from their respective NEM stacks. Using the
information contained in the response and the NEM Id of the responder the transports will build a cache of
destination addresses and NEM Ids. This will allow the transports to determine the NEM destination Id for
all unicast data messages.

12.3. PACKET PROCESSING FLOWS 119

’ Parameter ‘ Virtual Transport ‘ Raw Transport ‘

’ arpcacheenable on ‘ on ‘

The second option is to use the broadcast only feature of the Virtual Transport. When ARP cache mode
is disabled, the Raw Transport will send all unicast packets to the broadcast NEM Id address. No attempt
is made to determine the NEM Id associated with the unicast destination address. Each inbound transport
will attempt to deliver the unicast Ethernet frame and the kernel will drop all packets that do not match
the host. The Virtual Transport must be configured to operate in the same manner.

Parameter Virtual Transport ‘ Raw Transport ‘
arpcacheenable off off
broadcastmode on N/A

12.3 Packet Processing Flows

The Raw Transport receive packet (upstream) processing flowchart is shown in Figure 12.1. The Raw
Transport transmit packet (downstream) processing flowchart is shown in Figure 12.2.

/ Receive Packet from NEM Layer /

Is frame
IPv4 or IPv6
or ARP?

ARP Cache
Mode?

Update ARP Cache

v

Write frame to pcap device

Bitrate
enabled?

Figure 12.1: Raw Transport receive packet (upstream) processing flow.

120 CHAPTER 12. RAW TRANSPORT

/ Receive Packet from pcap device /

Is frame
1Pv4 or IPv6?

Derive DSCP from IP TOS field I | Use DSCP 0 I

Broadcast
Mode?

ARP Cache
Mode?

NEM destination =
Last 2 bytes of Ethernet Dest

Is Broadcast
or Multicast?

MNEM destination =
NEM_BROADCAST_ADDR

IP Destination
in ARP Cache?

NEM destination =
NEM_BROADCAST_ADDR

MNEM destination =
NEM Cache Entry

Bitrate
enabled?

No

Bits availible
to drain?

Figure 12.2: Raw Transport transmit packet (downstream) processing flow.

12.4. DEMONSTRATIONS 121
12.4 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

12.4.1 Demonstration 13

This demonstration deploys a ten node centralized RF Pipe emulation experiment illustrated in Figure 12.3.

The goal of this demonstration is to become familiar with using the Raw Transport and the Pathloss Con-
troller application.

Raw Raw Raw Raw Raw Raw Raw Raw Raw Raw

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
NEM 1 NEM 3 NEM 3 MNEM 4 NEM 5 NEM & NEM 7 NEM 8 NEM 9 NEM 10

node-server
[I

I I [|
(XX

5 & ¢ 6
¢ o

\/

)
/
4 \/

(J_\' L
i i

e (] \w >
o O-@— <4>>—

g

A 4 L 4
H i i

S
|

N 28 |88 5 |6 | |7 9
I | I | | I I | I

1
NEM 1 NEM 2 NEM 3 NEM 4 NEM 5 I NEME NEM 7 NEM 8 NEM S NEM 10

Platform 1
node-server

8 O—0—®>H

Figure 12.3: Demonstration 13 - Ten node centralized RF Pipe NEM deployment.

12.4.1.1 Demonstration Procedure

1. Review the Demonstration 13 platform XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/13
[emane@emanedemo 13] less platform.xml

2. Review the Demonstration 13 transport daemon XML using your favorite editor.
[emane@emanedemo 13] less transportdaemonl.xml

3. Deploy the demonstration.
[emane@emanedemo 13]$ sudo ./lxc-demo-start.sh -t transportdaemoni.xml

4. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

5. Connect to virtual node-1.
[emane@emanedemo 13]$ ssh node-1

6. Review the running processes.

[emane@node-1 ~1$ ps ax
PID TTY STAT TIME COMMAND
17 S+ 0:00 /usr/lib/lxc/lxc-init -- /tmp/lxc-node/13/1/init.sh

122 CHAPTER 12. RAW TRANSPORT

57 Ssl 1:06 /usr/local/bin/olsrd -f /home/emane/demonstration/13/ols
87 Ss 0:00 /usr/sbin/sshd -o PidFile=/tmp/lxc-node/13/1/run/sshd
97 Ss 0:00 sshd: emane [priv]

11 7 S 0:00 sshd: emane@pts/0

12 pts/0 Ss 0:00 -bash

72 pts/0 R+ 0:00 ps ax

7. Review node-1’s network interface configuration.

[emane@node-1 ~]$ ifconfig
bmf0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
inet addr:10.100.0.1 P-t-P:10.100.0.1 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

ethO Link encap:Ethernet HWaddr 02:01:00:00:00:01
inet addr:10.99.0.1 Bcast:10.99.0.2556 Mask:255.255.255.0
inet6 addr: fe80::1:ff:fe00:1/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:266 errors:0 dropped:0 overruns:0 frame:0
TX packets:3164 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:19089 (18.6 KiB) TX bytes:1023885 (999.8 KiB)

ethl Link encap:Ethernet HWaddr 02:01:01:00:00:01
inet addr:10.100.0.1 Bcast:10.100.0.255 Mask:255.255.255.0
inet6 addr: fe80::1:1ff:fe00:1/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:30160 errors:0 dropped:0 overruns:0 frame:0
TX packets:3999 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:3801600 (3.6 MiB) TX bytes:493342 (481.7 KiB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:5956 errors:0 dropped:0 overruns:0 frame:0
TX packets:5956 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:297800 (290.8 KiB) TX bytes:297800 (290.8 KiB)

8. Review node-1’s routing table.

[emane@node-1 ~]1$ route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.99.0.0 0.0.0.0 255.25656.255.0 U 0 0 0 ethO
10.100.0.0 0.0.0.0 255.2565.255.0 U 0 0 0 ethil
10.100.0.2 0.0.0.0 255.255.255.255 UH 1 0 0 ethl
10.100.0.3 0.0.0.0 255.255.255.255 UH 1 0 0 ethl
10.100.0.4 0.0.0.0 255.255.255.255 UH 1 0 0 ethl
10.100.0.5 0.0.0.0 255.255.255.255 UH 1 0 0 ethil
10.100.0.6 0.0.0.0 255.255.255.255 UH 1 0 0 ethl
10.100.0.7 0.0.0.0 255.255.255.255 UH 1 0 0 ethil
10.100.0.8 0.0.0.0 255.255.255.255 UH 1 0 0 ethil
10.100.0.9 0.0.0.0 255.255.255.255 UH 1 0 0 ethl
10.100.0.10 0.0.0.0 255.255.255.255 UH 1 0 0 ethl
224.0.0.0 0.0.0.0 240.0.0.0 U 0 0 0 bmf0

9. Ping another radio using the radio-NEMID host naming convention.

[emane@node-1 ~1$ ping -c 5 radio-2

PING radio-2 (10.100.0.2) 56(84) bytes of data.

64 bytes from radio-2 (10.100.0.2): icmp_reg=1 ttl=64 time=5.67 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=2 ttl=64 time=3.30 ms

12.4. DEMONSTRATIONS 123

10.

11.

12.

13.

14.

15.
16.

64 bytes from radio-2 (10.100.0.2): icmp_req=3 ttl=64 time=6.87 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=4 ttl=64 time=3.08 ms
64 bytes from radio-2 (10.100.0.2): icmp_req=5 ttl=64 time=17.5 ms

--- radio-2 ping statistics ---
5 packets transmitted, 5 received, 07 packet loss, time 4009ms

rtt min/avg/max/mdev = 3.086/7.287/17.506/5.306 ms

Disconnect from node-1.
[emane@node-1 ~]$ exit

logout
Connection to node-1 closed.

Open the Pathloss Controller application. From the top panel select Pathloss Controller from the same
launcher used for OLSR Viewer.

Create a new project. File — New. See Figure 12.4.
(a)

(b) Set the Nodes Entry Count to 10.
(c)

(d

Set the Project Name to demo13.

Set the No Loss Threshold to 9o.

) Set the Full Loss Threshold to 110.
(e) Verify Event Channel IP is 224.1.2.8.
(f
(g

Verify Event Channel Port is 45703.

)
) Verify Event Channel NIC is 1o.

Create New Mobility Model

Enter the parameters for the new model

Model Name: W
Node Entry Count: ’E
No Loss Threshold: @
Full Loss Threshold: 110 |
Event Service IP: 224.1.2.8
Event Service Port ’W

Event Service NIC:

Figure 12.4: Demonstration 13 - Pathloss Controller New Project dialog.
Experiment with modifying the pathloss scenario. Select an individual matrix entry to modify the
pathloss between two nodes and try the Quick Fill Panel interface. See Figure 12.5 and Figure 12.6.

Quick Fill all nodes to 100dB pathloss and publish the scenario entry. Quick Fill Panel: 100 — Quick Fill
— Enter Playback Mode — Play.

Observe what happens to the network using the OLSR Viewer Visualization Panel.

Stop the demonstration.

[emane@emanedemo 13]$ sudo ./lxc-demo-stop.sh

124 CHAPTER 12. RAW TRANSPORT

E Enter Pathloss Values %

Node 4 to Node 6 pathloss |20

Node 6 to Node 4 pathloss

| OK || Cancel |

Figure 12.5: Demonstration 13 - Pathloss Controller Pathloss Entry dialog.

Entry ID: ©
Mo Loss Threshold: 20
Full Loss Threshold: 110

Duration (sec: |1

Fill All Min
Fill All Max

| Quick Fill ||AIINndes |~

100

Figure 12.6: Demonstration 13 - Pathloss Controller Quick Fill Panel.

12.4.1.2 Concept Review

1. What are the EMANE components associated with this deployment type?
2. What are the possible usecases for using the Raw Transport?

3. Why must the interface assigned to a Raw Transport not be used for any other type of communication?

Part 1V

Events

125

Chapter 13

Mitre Mobility Model Event
Generator

The Mitre Mobility Model Event Generator creates pathloss and/or location events from input files in
Mitre Mobility Format. The file contains pathloss and location information between nodes on one second
boundaries.

13.1 Configuration Parameters

13.1.1 inputfileformat

Absolute file name of mobility file. One or more files may be specified by using a printf() style convention
using the inputfilecount configuration item as an index.

Type: String
Range: N/A
Default: None
Count: 1

XML Format: <param name="inputfileformat" value="path_loss_matrix_%02d.txt>"

13.1.2 inputfilecount

Total number of input files. If the inputfilename contains a printf() style expression the count will be used
as an index when creating the file names.

Type: Unsigned 32 bit Integer
Range: [0, 4294967295]

Default: None

Count: 1

XML Format: <param name="inputfilecount" value="1"

127

128 CHAPTER 13. MITRE MOBILITY MODEL EVENT GENERATOR

13.1.3 +totalnodes

Total number of nodes whose data is contained in the mobility files.

Type: Unsigned 32 bit Integer
Range: [0, 4294967295]

Default: None

Count: 1

XML Format: <param name="totalnodes" value="70"/>

13.1.4 maxnemidpresent

Maximum NEM Id present in the emulation experiment. This value is used to reduce the number of events
generated when a subset of nodes from the larger mobility data are used.

Type: Unsigned 16 bit Integer
Range: [0, 65534]

Default: None

Count: 1

XML Format: <param name="maxnemidpresent" value="12"/>

13.1.5 repeatcount

The number of times the mobility data should be parsed and events generated. A repeatcount of 1 simply
means to process the file once, generating events, and stop when the file is complete. A value greater than
1 allows you to process the data repeatcount times. A value of o will process the data repeatedly, restarting
indefinitely.

Type: Unsigned 32 bit Integer
Range: [0, 4294967295]

Default: None

Count: 1

XML Format: <param name="repeatcount" value="1"/>

13.1.6 utmzone

The UTM zone that corresponds to the UTM position information contained in the mobility data. This
is required to convert the data when generating location events. A limitation of the Mitre Mobility Model
format is that position data cannot cross UTM zones.

Type: String
Range: N/A

Default: None

Count: 1

XML Format: <param name="utmzone" value="18T"/>

13.2. MITRE MOBILITY MODEL FORMAT 129
13.1.7 entryreplay

Specify one or more space separated time:count pairs. entryreplay effectively allows you to hold at certain
mobility entries for a specified amount of time. For example a value of 70:120 3600:1800” would use the data
at mobility entry TO for 2 minutes, sending out the TO events 120 times and use the data at T3600 for 30
minutes.

Type: String
Range: N/A

Default: None

Count: 1

XML Format: <param name="entryreplay" value="0:120 3600:1800"/>

Parameter value format description:

<Time>:<Count> [<Time>:<Count>]...

Name Description Range

Time Corresponds to the second of data contained in the mobility model [0, 4294967295]
Count Represents the number of times you want to replay that data [1, 4294967295]

13.1.8 publishpathlossevents

Create/Publish pathloss events from mobility model input files.

Type: Boolean
Range: [of£, on]
Default: on
Count: 1

XML Format: <param name="publishpathlossevents" value="on"/>

13.1.9 publishlocationevents

Create/Publish location events from mobility model input files.

Type: Boolean
Range: [of£, on]
Default: on
Count: 1

XML Format: <param name="publishlocationevents" value="on"/>

13.2 Mitre Mobility Model Format

Mitre Mobility Model Format is an ASCII text file containing a single entry for every pair of nodes in the
mobility scenario on one second boundaries. Listing 13.1 shows a sample mobility file. For each second, the
number of entries required to completely describe the connectivity for ¥ nodes can be represented by the

130 CHAPTER 13. MITRE MOBILITY MODEL EVENT GENERATOR

following equation:
N-1
IR
=1
The Mitre Mobility Model text file contains eleven columns as defined below:
1. Time in Seconds

Node Target A
Node Target B

L

Pathloss between nodes. A single value denotes symmetric pathloss. Two values separated by a '/’
denotes asymmetric pathloss. Where the first value is the pathloss from Node A to Node B and the
second value is the pathloss from Node B to Node A.

Distance between nodes in meters

Node A UTM X position

Node A UTM Y position

Node A Antenna Height (altitude) in meters
Node B UTM X position

10. Node B UTM Y position

© ® N o o

11. Node B Antenna Height (altitude) in meters

0 1 2 102 13 540654 4431315 3 540663 4431325 3
0 1 3 103/301 13 540654 4431315 3 540663 4431325 3
0 1 4 104/401 13 540654 4431315 3 540663 4431325 3
0 1 5 105/501 13 540654 4431315 3 540663 4431325 3
0 2 3 203/302 13 540654 4431315 3 540663 4431325 3
0 2 4 204/402 13 540654 4431315 3 540663 4431325 3
0 2 5 205/502 13 540654 4431315 3 540663 4431325 3
0 3 4 304/403 13 540654 4431315 3 540663 4431325 3
0 3 5 305/503 13 540654 4431315 3 540663 4431325 3
0 4 5 405/504 13 540654 4431315 3 540663 4431325 3

Listing 13.1: Mitre Mobility file sample.

13.3 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

13.3.1 Demonstration 14
This demonstration deploys a ten node distributed IEEE 802.11abg NEM emulation experiment illustrated

in Figure 4.1. The goal of this demonstration is to become familiar with the Mitre Mobility Model Event
Generator.

13.3.1.1 Demonstration Procedure

1. Review the Demonstration 14 Event Service XML using your favorite editor.

13.3. DEMONSTRATIONS 131

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10
NEM 1 NEM 3 NEM 3 WNEM 4 MNEM 5 MNEM 6 NEM 7 NEM 8 MNEM 9 MNEM 10

I I I I I I I I

oo elele |

9 || a0

4
4

¢

<

i |

‘./'

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform 6 Platform 7 Platform 8 Platform 9 Platform 10
NEM 1 NEM 2 MNEM 3 MNEM 4 MNEM & MNEM & NEM 7 NEM 8 MNEM 9 MNEM 10
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

Figure 13.1: Demonstration 14 - Ten node distributed IEEE 802.11abg NEM deployment.

[emane@emanedemo ~] cd /home/emane/demonstration/14
[emane@emanedemo 14] less eventservice.xml

2. Review the Demonstration 14 Mitre Mobility Generator XML using your favorite editor.

[emane@emanedemo 14] less mitremobilitygenerator.xml

3. Deploy the demonstration.

[emane@emanedemo 14]$ sudo ./lxc-demo-start.sh

4. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

5. Stop the demonstration.

[emane@emanedemo 14]$ sudo ./lxc-demo-stop.sh

13.3.1.2 Concept Review

1. Why is the UTM zone a required configuration item?

2. What is the purpose of the entryreplay parameter?

132 CHAPTER 13. MITRE MOBILITY MODEL EVENT GENERATOR

Chapter 14

Emulation Script Event (Generator

The Emulation Script Event Generator creates location events from input files in the Emulation Script
Format. Emulation Script Format was developed by the Protean Research Group at Naval Research Lab-
oratory [Protean Research Group, 2010]. The file contains location information between nodes on specific
time boundaries.

14.1 Configuration Parameters

14.1.1 inputfile

Absolute file name of the emulation script mobility input file. One or more files may be specified by using
this parameter multiple times and modifying the value attribute accordingly. Files are processed in the order
they appear in the XML.

Type: String
Range: N/A
Default: None
Count: Unlimited

XML Format: <param name="inputfile" value="path_loss_matrix_00.xml/>"

14.1.2 +totalnodes

Total number of nodes whose data is contained in the mobility files.

Type: Unsigned 32 bit Integer
Range: [0, 4294967295]

Default: None

Count: 1

XML Format: <param name="totalnodes" value="70"/>

14.1.3 repeatcount

The number of times the mobility data should be parsed and events generated. A repeatcount of 1 simply
means to process the file once, generating events, and stop when the file is complete. A value greater than

133

134 CHAPTER 14. EMULATION SCRIPT EVENT GENERATOR

1 allows you to process the data repeatcount times. A value of o will process the data repeatedly, restarting
indefinitely.

Type: Unsigned 32 bit Integer
Range: [0, 4294967295]

Default: None

Count: 1

XML Format: <param name="repeatcount" value="1"/>

14.1.4 schemalocation

Specifies the location of the schema file used to validate files specified via inputfile parameters.

Type: String
Range: N/A
Default: None
Count: 1

XML Format: <param name="schemalocation" value="http://configserver/schema/EmulationScriptSchema.xsd/>"

14.1.5 Emulation Script Data Format

Emulation Script Format is an XML file containing Event elements. Each element contains two child elements:
1. time - Specifying the amount of time in seconds that has elapsed since the start (initial event).

2. Node - Specifying the Id (using an attribute) and the location (using a child element) of a given node
in the network.

See [Protean Research Group, 2010] for a more detailed description of Emulation Script Format.

<?7xml version="1.0" encoding="UTF-8"7>
<EmulationScript xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="EmulationScriptSchema.xsd">
<Event>
<time>0</time>
<Node id="1">
<location>40.0310751857906,-74.5235179912516 ,3</location>
</Node>
<Node id="2">
<location>40.0311648464297,-74.5234118838455,3</1location>
</Node>
</Event>
<Event>
<time>1</time>
<Node id="1">
<location>40.0311648464297 ,-74.5234118838455,3</location>
</Node>
<Node id="2">
<location>40.031227237558,-74.5232473639998,3</1location>
</Node>
</Event>
</EmulationScript>

Listing 14.1: Emulation Script Data file sample.

14.2. DEMONSTRATIONS 135
14.2 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

14.2.1 Demonstration 15

This demonstration deploys a ten node distributed RP Pipe NEM emulation experiment illustrated in Fig-
ure 14.1. The goal of this demonstration is to become familiar with the Emulation Script Generator.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

NEM 1 NEM 3 NEM 3 NEM 4 NEM 5 NEM 6 NEM 7 NEM 8 NEM 9 NEM 10

I I I I I I I

I
%\ J‘j é\) I/Jh\l ! (];\I
ol ~— _/ S 4 A A 4 =

_ 4
i i ! i

\ /
~

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform 6 Platform 7 Platform 8 Platform 9 Platform 10
NEM 1 NEM 2 NEM 3 MNEM 4 MEM &5 NEM & NEM 7 NEM 8 MNEM 3 NEM 10
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

Figure 14.1: Demonstration 15 - Ten node distributed RF Pipe NEM deployment.

14.2.1.1 Demonstration Procedure

1. Review the Demonstration 15 Event Service XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/15
[emane@emanedemo 15] less eventservice.xml

2. Review the Demonstration 15 Emulation Script Generator XML using your favorite editor.
[emane@emanedemo 15] less emulationscriptgenerator.xml

3. Deploy the demonstration.
[emane@emanedemo 15]$% sudo ./lxc-demo-start.sh

4. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

5. Stop the demonstration.

[emane@emanedemo 15]$ sudo ./lxc-demo-stop.sh

136 CHAPTER 14. EMULATION SCRIPT EVENT GENERATOR

Chapter 15

Emulation Event Log Generator

The Emulation Event Log (EEL) Generator creates EMANE events from input files in EEL Format. EEL
format was developed by the Protean Research Group at Naval Research Laboratory.

This (EEL) file format is a linear, text file format that can be used to convey the value of proper-
ties or parameters identified by a keyword. This file allows for ”events” affecting modeling system
components and/or their properties that occur over time to be expressed (e.g. as a file format
to 7drive” event generation over time) or to be logged (e.g. as a log file format for ”capturing”
run-time events for replay or post-processing analysis). The EEL file is a text format consisting
of lines (a.k.a. ”sentences”) that each contain a timestamp, some "module identifier” and an
event type "keyword” that implies the format and interpretation of the remainder of the line.
The "keyword” approach allows a mixture of event types to be included within an EEL file and
expanded over time as needed. Tools that process EEL file may choose to process a subset of
event types as needed. The format also lends itself to simple filtering by event type, module
identifier, etc using commonly-available tools (e.g., ”grep”, etc).

The linear, time-ordered format also allows it to be incrementally processed such that even
very bulky files can be handled as needed. Note that, in the interest of compactness, it is typ-
ically expected that the events included will represent ”deltas” (i.e. changes) to any previously
established state. However, one could choose to have each time epoch (or at some less granular
interval such as once per minute) include the complete modeling system state (e.g. all current
node locations, adjacencies, etc). This would result in a more bulky EEL file but could enable
processing tools to "skip” to desired sections of the file without need to process the entire file
from its beginning. This specification does not dictate or preclude such either usage.

Thus, the skeleton format of lines within the EEL format is:
<time> <moduleID> <eventType> <type-specific fields ...>

[Protean Research Group, 2010]

The EEL Event Generator loads EEL sentence parsing plugins to parse and build EMANE events. Plugins
are associated with event type keywords and are capable of producing either full or delta event updates. A
delta event update contains EMANE events corresponding to EEL entries loaded since the last request for
events made to the plugin. A full event update contains all the EMANE events necessary to convey the
complete current state for all moduleId information loaded by the respective plugin.

Any EEL entries encountered that are not handled by a loaded parser are ignored.

137

138

CHAPTER 15. EMULATION EVENT LOG GENERATOR

There are three EEL sentence parsing plugins:

1.

15.1

15.1

Pathloss Parser - Parses pathloss sentences and builds the resulting event.

<time> nem:<Id> pathloss nem:<Id>,<pathloss>[,<reversePathloss>] [nem:<Id>,<pathloss>[,<reversePathloss>]]...

pathoss Pathloss in dB
reversePathloss Reverse Pathloss in dB

. Location Parser - Parses location sentences and builds the resulting event.

<time> nem:<Id> location <latitude>,<longitude>,<altitude>[,msl/agl]

latitude Latitude in degrees.
longitude Longitude in degrees.
altitude Altitude in meters.

Antenna Direction Parser - Parses antenna direction sentences and builds the resulting event.

<time> nem:<Id> antennadirection <elewvation>,<azimuth>,<elevationBeamWidth>,<azimuthBeamWidth>

elevation Antenna elevation in degrees.
azimuth Antenna azimuth in degrees.
elevationBeamWidth ~ Antenna elevation beam width in degrees.
azimuthBeamW idth Antenna azimuth beam width in degrees.

Configuration Parameters

.1 inputfile

Absolute file name of the EEL input file. Additional EEL files may be specified using multiple inputfile
parameters. Files are processed in the order they appear in the XML.

Type: String

Range: N/A

Default: None

Count: Unlimited

XML Format: <param name="inputfile" value="mobility.eel/>"

15.1

.2 loader

Map EEL event type keywords to EEL loader plugins. The optional full or delta determines whether events
produced from the plugins represent only the new EEL entries processed since the last request for events or
the complete current cached state. The default specification is delta.

Type: String

Range: N/A

Default: None

Count: Unlimited

XML Format: <param param name="loader" value="pathLoss:eelloaderpathloss:full"/>"

15.2. EMULATION EVENT LOG FORMAT 139

Parameter value format description:

<eventType>:<Plugin Name>:[full |deltal

Name Description

event Type EEL Event Type

Plugin Name Plugin corresponding to the EEL Event Type

15.2 Emulation Event Log Format

For more information on EEL Format see [Protean Research Group, 2010].

0.

0.

o

O OO O OO OO

0

0

o

O O O OO0 O OO

nem:70 pathLoss nem:22,96.3 nem:23,95.0 nem:24,95.1 nem:25,95.2 nem:26 ,95.3 nem:27 ,95.4 nem:28,95.5
nem:29,95.0 nem:30,95.1 nem:31,95.2 nem:32,95

nem:70 pathLoss nem:42,95.3 nem:43,95.4 nem:44,95.5 nem:45,95.0 nem:46 ,95.1 nem:47 ,95.2 nem:48,95.3
nem:49 ,95.4 nem:50,95.5 nem:51,95.5 nem:52,95.6

nem:70 pathLoss nem:62,95.2 nem:63,95.3 nem:64,95.4 nem:65,94.2 nem:66 ,94.2 nem:67 ,96.3 nem:68,96.3
nem:69,123.3

nem:1 location gps 40.031075,-74.523518,3.000000

location gps 40.031165,-74.523412,3.000000

location gps 40.031227,-74.523247,3.000000

location gps 40.031290,-74.523095,3.000000

antennadirection 0,90,180,10

antennadirection 0,270,180,10

antennadirection 0,90,180,10

antennadirection 0,270,180,10

B
(]
El
B WN =B WwN

Listing 15.1: Emulation Event Log sample.

15.3 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

15.3.1 Demonstration 16

This demonstration deploys a ten node distributed RP Pipe NEM emulation experiment illustrated in Fig-
ure 15.1. The goal of this demonstration is to become familiar with the Emulation Event Log Generator.

15.3.1.1 Demonstration Procedure

1. Review the Demonstration 16 Event Service XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/16
[emane@emanedemo 16] less eventservice.xml

2. Review the Demonstration 16 Emulation Event Log Generator XML using your favorite editor.
[emane@emanedemo 16] less eelgenerator.xml

3. Deploy the demonstration.
[emane@emanedemo 16]$ sudo ./lxc-demo-start.sh

4. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

140 CHAPTER 15. EMULATION EVENT LOG GENERATOR

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10
NEM 1 NEM 3 NEM 3 WNEM 4 MNEM 5 MNEM 6 NEM 7 NEM 8 MNEM 9 MNEM 10

s)ee @00 @ ¢]e
SEEEEEEEE

| ;
| T

. i
N g)

9 0 Q0 Q Q O '
CACCIC I

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform 6 Platform 7 Platform 8 Platform 9 Platform 10
NEM 1 NEM 2 MNEM 3 MNEM 4 MNEM & MNEM & NEM 7 NEM 8 MNEM 9 MNEM 10
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

Figure 15.1: Demonstration 16 - Ten node distributed RF Pipe NEM deployment.

5. Stop the demonstration.

[emane@emanedemo 16]$ sudo ./lxc-demo-stop.sh

15.3.1.2 Concept Review

1. What happens when an Emulation Event Log sentence is encountered that does not match a sentence
parser plugin definition?

Chapter 16

Comm Effect Event Generator

The Comm Effect Event Generator creates Comm Effect events from input files in the Comm Effect Impair-
ment Format. The file contains impairment information between nodes on one second boundaries.

16.1 Configuration Parameters

16.1.1 inputfile

Absolute file name of the impairment file. Additional impairment files may be specified using multiple
inputfile parameters. Files are processed in the order they appear in the XML.

Type: String
Range: N/A
Default: None
Count: Unlimited

XML Format: <param name="inputfile" value="commeffect.txt/>"

16.1.2 +totalnodes

Total number of nodes whose data is contained in the impairment file(s).

Type: Unsigned 32 bit Integer
Range: [0, 4294967295

Default: None

Count: 1

XML Format: <param name="totalnodes" value="70"/>

16.1.3 maxnemidpresent

Maximum NEM Id present in the emulation experiment. This value is used to reduce the number of events
generated when a subset of nodes from the larger Comm Effect data are used.

141

142 CHAPTER 16. COMM EFFECT EVENT GENERATOR

Type: Unsigned 16 bit Integer
Range: [0, 65534]

Default: None

Count: 1

XML Format: <param name="maxnemidpresent" value="12"/>

16.1.4 repeatcount

The number of times the impairment data should be parsed and events generated. A repeatcount of 1 simply
means to process the file once, generating events, and stop when the file is complete. A value greater than
1 allows you to process the data repeatcount times. A value of o will process the data repeatedly, restarting
indefinitely.

Type: Unsigned 32 bit Integer
Range: [0, 4294967295]

Default: None

Count: 1

XML Format: <param name="repeatcount" value="1"/>

16.1.5 entryreplay

Specify one or more space separated time:count pairs. entryreplay effectively allows you to hold at certain
impairment entries for a specified amount of time. For example a value of 70:120 3600:1800” would use the
data at impairment entry TO for 2 minutes, sending out the TO events 120 times and use the data at T'3600
for 30 minutes.

Type: String
Range: N/A

Default: None

Count: 1

XML Format: <param name="entryreplay" value="0:120 3600:1800"/>

Parameter value format description:

<Time>:<Count> [<Time>:<Count>]...

Name Description Range

Time Corresponds to the second of data contained in the impairment data [0, 4294967295]

Count Represents the number of times you want to replay that data [1, 4294967295]

16.2 Comm Effect Impairment Format

Comm Effect Impairment Format is an ASCII text file containing a single entry for every pair of nodes in
the scenario on one second boundaries. Listing 16.1 shows a sample impairment file. For each second, the
number of entries required to completely describe the impairments for N nodes can be represented by the

16.2. COMM EFFECT IMPAIRMENT FORMAT 143

following equation:

N-1
ZN—z‘
=1

The Comm Effects Impairment text file contains eleven columns as defined below:

1. Time in seconds

2. NEM A Target

3. NEM B Target

4. Latency (seconds) - Second component of the average delay to be introduced for packets between NEM
A and NEM B. A single value denotes symmetry and two values separated by a ’/’ denotes asymmetric
latency between the NEM pairs.

5. Latency (microseconds) - Microsecond component of the average delay to be introduced for packets
between NEM A and NEM B. A single value denotes symmetry and two values separated by a '/’
denotes asymmetric latency between the NEM pairs.

6. Jitter (seconds) - Second component of the jitter on the delay to be introduced for packets between
NEM A and NEM B. A single value denotes symmetry and two values separated by a ’/’ denotes
asymmetric jitter between the NEM pairs.

7. Jitter (microseconds) - Microsecond component of the jitter on the delay to be introduced for packets
between NEM A and NEM B. A single value denotes symmetry and two values separated by a ’/’
denotes asymmetric jitter between the NEM pairs.

8. Loss (percentage) - Loss percentage to be introduced between NEM A and NEM B.A single value
denotes symmetry and two values separated by a ’/’ denotes asymmetric loss between the NEM pairs.

9. Duplicates (percentage) - The duplicate percentage to be introduced between NEM A and NEM B.
A single value denotes symmetry and two values separated by a ’/’ denotes asymmetric duplication
between the NEM pairs.

10. Unicastbitrate (bps) - The bitrate to be introduced between NEM A and NEM B for packets addressed
to the NEM or handled in promiscuous mode. A single value denotes symmetry and two values
separated by a ’/’ denotes asymmetric bitrate between the NEM pairs.

11. Broadcastbitrate (bps) - The bitrate to be introduced between NEM A and NEM B for packets sent
the NEM Broadcast Address. A single value denotes symmetry and two values separated by a '/’
denotes asymmetric bitrate between the NEM pairs.

0 1 2 0 0 0 0 0 0 10000 1000
0 1 3 0 0 0 0 0 0 10000 1000
0 1 4 0 0 0 0 0 0 10000 1000
0 2 3 0 0 0 0 0 0 10000 1000
0 2 4 0 0 0 0 0 0 10000 1000
0 3 4 0 0 0 0 0 0 10000 1000
1 1 2 0 500000 0 100000 50 0 10000 1000
1 1 3 0 500000 0 100000 50 0 10000 1000
1 1 4 0 500000 0 100000 50 0 10000 1000
1 2 3 0 500000 0 100000 50 0 10000 1000
1 2 4 0 500000 0 100000 50 0 10000 1000
1 3 4 0 500000 0 100000 50 0 10000 1000
2 1 2 0 0 0 0 100 0 10000 1000
2 1 3 0 0 0 0 100 0 10000 1000
2 1 4 0 0 0 0 100 0 10000 1000
2 2 3 0 0 0 0 100 0 10000 1000
2 2 4 0 0 0 0 100 0 10000 1000
2 3 4 0 0 0 0 100 0 10000 1000
3 1 2 0 300000/500000 0 100000/200000 25/40 0/30 10000 1000

144 CHAPTER 16. COMM EFFECT EVENT GENERATOR

3 1 3 0 300000/500000 0 100000/200000 25/35 0/100 10000 1000
3 1 4 0 300000/500000 0 100000/200000 25/50 0/50 10000 1000
3 2 3 0 500000 0 100000 25 0 10000 1000
3 2 4 0 500000 0 100000 25 0 10000 1000
3 3 4 0 500000 0 100000 25 0 10000 1000

Listing 16.1: Comm Effect Effect file sample.

16.3 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

16.3.1 Demonstration 17

This demonstration deploys a ten node distributed Comm Effect NEM emulation experiment illustrated in
Figure 16.1. The goal of this demonstration is to become familiar with the Comm Effect Event Generator.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

MNEM 1 NEM 3 NEM 3 NEM 4 NEM 5 MNEM 6 MNEM 7 NEM 8 NEM 9 NEM 10

| [| [|
7N N o
1) 2 : <3) é\) <5/ > /

y V|| & y 4,

, @ || |
& o & o
- 4 k_l_ >

.

S 4 A 7
y 7 N 7
4 A 4

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform 6 Platform 7 Platform 8 Platform 9 Platform 10
NEM 1 NEM 2 MNEM 3 MNEM 4 MNEM & MNEM & NEM 7 NEM 8 MNEM 9 MNEM 10
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

Figure 16.1: Demonstration 17 - Ten node distributed RF Pipe NEM deployment.

16.3.1.1 Demonstration Procedure

1. Review the Demonstration 17 Event Service XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/17
[emane@emanedemo 17] less eventservice.xml

2. Review the Demonstration 17 Comm Effect Event Generator XML using your favorite editor.
[emane@emanedemo 17] less commeffectgenerator.xml

3. Deploy the demonstration.
[emane@emanedemo 17]$ sudo ./lxc-demo-start.sh

4. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

16.3. DEMONSTRATIONS 145

5. Stop the demonstration.

[emane@emanedemo 17]$ sudo ./lxc-demo-stop.sh

146 CHAPTER 16. COMM EFFECT EVENT GENERATOR

Chapter 17

Antenna Direction Event Generator

The Antenna Direction Event Generator creates antenna direction events from input files in the Antenna
Direction format. The file contains node based antenna profile and pointing information on one second
boundaries.

17.1 Configuration Parameters

17.1.1 inputfileformat

Absolute file name of the antenna direction file. One or more files may be specified by using a print£() style
convention using the inputfilecount configuration item as an index.

Type: String
Range: N/A
Default: None
Count: 1

XML Format: <param name="inputfileformat" value="antenna_direction’02d.txt>"

17.1.2 inputfilecount

Total number of input files. If the inputfilename contains a printf() style expression the count will be used
as an index when creating the file names

Type: Unsigned 32 bit Integer
Range: [0, 4294967295

Default: None

Count: 1

XML Format: <param name="inputfilecount" value="1"

17.1.3 +totalnodes

Total number of nodes whose data is contained in the antenna direction file.

147

148 CHAPTER 17. ANTENNA DIRECTION EVENT GENERATOR

Type: Unsigned 32 bit Integer
Range: [0, 4294967295

Default: None

Count: 1

XML Format: <param name="totalnodes" value="70"/>

17.1.4 repeatcount

The number of times the antenna direction data should be parsed and events generated. A repeatcount of
1 simply means to process the file once, generating events, and stop when the file is complete. A value
greater than 1 allows you to process the data repeatcount times. A value of o will process the data repeatedly,
restarting indefinitely.

Type: Unsigned 32 bit Integer
Range: [0, 4294967295]

Default: None

Count: 1

XML Format: <param name="repeatcount" value="1"/>

17.2 Antenna Direction Format

Antenna Direction Format is an ASCII text file containing a single entry for every node using directional
antenna on one second boundaries.

The Antenna Direction text file contains eleven columns as defined below:
1. Time in Seconds
2. Node Target
3. Antenna Elevation in degrees
4. Antenna Azimuth in degrees
5. Antenna Elevation Beam Width in degrees

6. Antenna Azimuth Beam Width in degrees

90 180 10
270 180 10
90 180 10
270 180 10
180 180 10
180 180 10
0 180 10
0 180 10
135 180 10
225 180 10
45 180 10
315 180 10

NNMNNMNNRRRPRRPROOOO
B WNE D WNERE D WN -
O O OO0 O0OO0O0OO0OO0OOoOOoOOo

Listing 17.1: Antenna Direction file sample.

17.3. DEMONSTRATIONS

17.3 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and

review each demonstration.

17.3.1 Demonstration 18

This demonstration deploys a four node centralized IEEE 802.11abg NEM emulation experiment illustrated
in Figure 17.1. The goal of this demonstration is to become familiar with the Antenna Direction Event

Generator.

Virtual Virtual Virtual Virtual
Transport Transport Transport Transport
node-1 node-2 node-3 node-4
MNEM 1 NEM 3 NEM 3 MNEM 4

\ Y A /\
@@ B
Fe Y Y @ Y
A 4 @ @ L 4
i H i i
i ; i E

= ~ Fe

!
NEM 1 NEM 2 NEM 3 NEM 4

Platform 1
node-server

Figure 17.1: Demonstration 18 - Four node centralized IEEE 802.11abg NEM deployment.

17.3.1.1 Demonstration Procedure

1. Review the Demonstration 18 Event Service XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/18
[emane@emanedemo 18] less eventservice.xml

. Review the Demonstration 18 Antenna Direction Event Generator XML using your favorite editor.

[emane@emanedemo 18] less antennadirectiongenerator.xml

. Deploy the demonstration.

[emane@emanedemo 18]$ sudo ./lxc-demo-start.sh

. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR

Viewer from the launcher to the right of the Firefox launcher.

. Stop the demonstration.

[emane@emanedemo 18]$ sudo ./lxc-demo-stop.sh

17.3.1.2 Concept Review

1. Why are two event generators required for this demonstration?

150 CHAPTER 17. ANTENNA DIRECTION EVENT GENERATOR

Chapter 18

GPSd Location Agent

The GPSd Location Agent uses a pseudo terminal to emulate a GPS Receiver. Received location events are
used to generate NMEA strings which are written to a pseudo terminal in order to make position information
available to any application capable of parsing NMEA strings.

18.1 Configuration Parameters

18.1.1 gpsdcontrolsocket

The name of the GPSd control socket for adding the pseudo terminal to the device list. The control socket
is used when the GPSd Location Agent instance should attempt to connect to GPSd. Only used when
gpsdconnectionenabled is set to on.

Type: String

Range: N/A

Default: /tmp/gpsd.control
Count: 1

XML Format: <param name="gpsdcontrolsocket" value="/tmp/gpsd.control"/>"

18.1.2 pseudoterminalfile

The name of the file to create which will contain the name of the pseudo terminal in use by the GPSd
Location Agent. Only created when gpsdconnectionenabled set to off.

Type: String

Range: N/A

Default: /tmp/gpsdlocation.pty
Count: 1

XML Format: <param name="pseudoterminalfile" value="/tmp/gpsdlocation.pty"/>"

18.1.3 gpsdconnectionenabled

Switch to set GPSd Location Agent to either actively connect to GPSd (on) or instead create a file containing
the name of the pseudo terminal currently in use (off).

151

152

Type:

Range:
Default:
Count:

XML Format:

CHAPTER 18. GPSD LOCATION AGENT

Boolean
[off, on]
off

1

<param param name="gpsdconnectionenabled" value="off"/>"

18.2 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

18.2.1 Demonstration 19

This demonstration deploys a ten node distributed IEEE 802.11abg NEM emulation experiment illustrated
in Figure 18.1. The goal of this demonstration is to become familiar with the GPSd Location Agent.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

NEM 1 NEM 3 NEM 3 NEM 4 NEM 5 NEM 6 NEM 7 NEM 8 NEM 9 NEM 10

I I I I I I I

| I
7\ N\ A
AR AR K 2K K AK K K 2K
;/

-

L
\,
2

\ g

.

4 .
/ / 7
4 , b
/ 4 y 4 </
4

]
1
s
© 6 6 6 06 06 6 6 0 o

<

1 2 3 4 5 6 7 9 10

Platform 1 Platform 2 Platform 3 Platform 4 Platform 5 Platform 6 Platform 7 Platform 8 Platform 9 Platform 10
NEM 1 NEM 2 NEM 3 MNEM 4 MEM &5 NEM & NEM 7 NEM 8 MNEM 3 NEM 10
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

Figure 18.1: Demonstration 19 - Ten node distributed IEEE 802.11abg NEM deployment.

18.2.1.1 Demonstration Procedure

1. Review the Demonstration 19 Event Damon XML using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/19
[emane@emanedemo 19] less eventdaemon{[1-9],10}.xml

2. Deploy the demonstration.

[emane@emanedemo 19]$ sudo ./lxc-demo-start.sh -d O

3. Connect to virtual node-1.

[emane@emanedemo 19]$ ssh node-1

4. Review node-1's emulated GPS.

18.2. DEMONSTRATIONS 153

[emane@node-1 ~1$ cgps

Time: 2012-02-08T18:05:14.0Z PRN: Elev: Azim: SNR: Used:
Latitude: 40.037071 N 1 41 104 41 Y
Longitude: 74.482736 W 3 09 084 51 Y
Altitude: 9.8 ft 5 70 030 39 Y
Speed: 0.0 mph 7 35 185 25 Y
Heading: 0.0 deg (true) 5 10 297 25 Y
Climb: 0.0 ft/min 7 53 311 21 Y
Status: 3D FIX (46 secs) 9 02 029 29 N
GPS Type: 11 48 064 32 N
Longitude Err: +/- 7 ft

Latitude Err: +/- 9 ft

Altitude Err: +/- 22 ft

Course Err: n/a

Speed Err: +/- 13 mph

5. Disconnect from node-1.

[emane@node-1 ~]$ exit
logout
Connection to node-1 closed.

6. Stop the demonstration.

[emane@emanedemo 19]$ sudo ./lxc-demo-stop.sh

154 CHAPTER 18. GPSD LOCATION AGENT

Part V

Python Bindings

155

W N OO W N

Chapter 19

Event Service Python Bindings

The Python Event Service bindings allow for the creation of custom Python scripts which can interact with
the EMANE Event Service using libemaneventservice, a C language library for developing embedded event
processing applications.

For more information on the libemaneeventservice API refer to the EMANE Developer Manual and the
manual entries: emaneeventservice, emaneeventlocation, emaneeventpathloss, emaneeventcommeffect and emaneevent-

antennadirection.

The Event Service Python bindings are comprised of bindings for the Event Service and the four standard
EMANE events: Location, Pathloss, Comm Effect and Antenna Direction.

19.1 Configuration

In order to use the Python Event Service bindings, libemaneeventservice must be configured appropriately.
libemaneventservice will search for its configuration in three locations before falling back and using applica-
tion defaults. The search order is as follows:

1. If the environment variable LIBEMANEEVENTSERVICECONFIG exists, it will be used. This variable must be
set to a configuration file name.

2. If $HOME/.libemaneeventservice.xml exists, it will be used.
3. If /etc/libemaneeventservice.xml exists, it will be used.

4. The default values are: group 224.1.2.8, port 45703, multicast loop enabled (1), TTL 32. No default
multicast device is specified. The kernel routing table is used.

<?xml version=’1.0’ standalone=’yes’?>
<emaneeventmsgsvc >
<group>224.1.2.8</group>
<port >45703</port>
<device>lo</device>
<mcloop>1</mcloop>
<ttl>32</ttl>
</emaneeventmsgsvc>

Listing 19.1: libemaneeventservice configuration file.

157

158 CHAPTER 19. EVENT SERVICE PYTHON BINDINGS

19.2 EventService

The Python EventService module provides an interface for subscribing and publishing to the Event Service.
Listing 19.2 shows a sample script which publishes a single Location Event.

© O NG A W N e

NN N NN NN B R R 2 s e e
N0 OO RO 0O N O S W B O

#!/usr/bin/env python

import emaneeventservice
import emaneeventlocation

service =

Location Event contains a variable list of NEM locations

location

emaneeventservice.EventService ()

= emaneeventlocation.

EventLocation (10)

location.set (0,1,40.031075,-74.523518,3)
location.set(1,2,40.031165,-74.523412,3)
location.set (2,3,40.031227,-74.523247,3)
location.set (3,4,40.031290,-74.523095,3)
location.set(4,5,40.031361,-74.522942,3)
location.set(5,6,40.031433,-74.522836,3)
location.set(6,7,40.031075,-74.523518,3)
location.set(7,8,40.031165,-74.523412,3)
location.set (8,9,40.031227,-74.523247,3)

location.

set (9,10,40.031290,-74.523095,3)

service.publish(emaneeventlocation.EVENT_ID,
emaneeventservice.PLATFORMID_ANY,
emaneeventservice.NEMID_ANY,

emaneeventservice.COMPONENTID_ANY,

location.export())

Listing 19.2: Python EventLocation publish example.

19.3 EventLocation

The Python EventLocation module provides an interface for creating and accessing Location Events. Loca-

tion Event entries are returned as a dictionary of tuples:

{1: (1, 40.031075, -74.523517, 3),
2: (2, 40.031165, -74.523411, 3),
3: (3, 40.031227, -74.523246, 3),
4: (4, 40.031289, -74.523094, 3),
5: (5, 40.03136, -74.522042, 3),
6: (6, 40.031432, -74.522835, 3),
7: (7, 40.031075, -74.523517, 3),
8: (8, 40.031165, -74.523411, 3),
9: (9, 40.031227, -74.523246, 3),

10: (10, 40.031289, -74.523094, 3)}

Where, the dictionary key is the NEM Id associated with the tuple value and the tuple contains the respective
NEM Id, latitude in degrees, longitude in degrees and altitude in meters. Listing 19.3 contains sample code
showing the creation and publication of a Location Event. Listing 19.4 contains a sample Location Event
handler.

© W N T A W N R

N
S ©®NO O A WN RO

© O N O A W N e

P e
[IR CR N)

19.4. EVENTPATHLOSS 159

Location Event contains a variable list of NEM locations
location = emaneeventlocation.EventLocation (10)

location.set (0,1,40.031075,-74.523518,3)
location.set(1,2,40.031165,-74.523412,3)
location.set(2,3,40.031227,-74.523247,3)
location.set (3,4,40.031290,-74.523095,3)
location.set(4,5,40.031361,-74.522942,3)
location.set(5,6,40.031433,-74.522836,3)
location.set(6,7,40.031075,-74.523518,3)
location.set(7,8,40.031165,-74.523412,3)
location.set (8,9,40.031227,-74.523247,3)
location.set(9,10,40.031290,-74.523095,3)

service.publish(emaneeventlocation.EVENT_ID,
emaneeventservice.PLATFORMID_ANY,
emaneeventservice.NEMID_ANY,
emaneeventservice.COMPONENTID_ANY,
location.export ())

Listing 19.3: Python EventLocation publish example.

def handleLocationEvent (event, platform, nem, component, data):
global location

location +=1

print "received location event ", event, " platform ", platform,)\
" nem ", nem, " component ", component, " length ",len(data),\
" bytes"

event = emaneeventlocation.EventLocation(data)

entries = event.entries()

for e in entries.values():
print e

Listing 19.4: Python EventLocation handler example.

19.4 EventPathloss

The Python EventPathloss module provides an interface for creating and accessing Pathloss Events. Pathloss
Event entries are returned as a dictionary of tuples:

{1: (1, 100.0, 100.0),
2: (2, 100.0, 100.0),
3: (3, 100.0, 100.0),
4: (4, 100.0, 100.0),
5: (5, 100.0, 100.0),
6: (6, 100.0, 100.0),
7: (7, 100.0, 100.0),
8: (8, 100.0, 100.0),
9: (9, 100.0, 100.0),

s
10: (10, 100.0, 100.0)}

Where, the dictionary key is the transmitter NEM Id associated with the tuple value and the tuple contains
the respective transmitter NEM Id, pathloss from the transmitter to the receiver in dB and the pathloss from
the receiver to the transmitter in dB. Listing 19.5 contains sample code showing the creation and publication
of a Pathloss Event. Listing 19.6 contains a sample Pathloss Event handler.

© W N T A W N R

e <
o A W NP O

© W N T A W N e

e
oA W N RO

160 CHAPTER 19. EVENT SERVICE PYTHON BINDINGS

Pathloss Event contains a variable list of transmittting NEM pathloss and
reverse pathloss enties.

pathloss = emaneeventpathloss.EventPathloss (10)

for index in range(0,10):
pathloss.set (index,
index+1,
100,
100)

service.publish(emaneeventpathloss.EVENT_ID,
emaneeventservice.PLATFORMID_ANY,
emaneeventservice.NEMID_ANY,
emaneeventservice.COMPONENTID_PHYI,
pathloss.export ())

Listing 19.5: Python EventPathloss publish example. This listing is atypical. Pathloss Events are usually tailored to each
NEM target since they represent the pathloss from one ore more transmitters to a receiver.

def handlePathlossEvent (event, platform, nem, component, data) :
global pathloss

pathloss +=1

print "received pathloss event ", event, " platform ", platform,\
" nem ", nem, " component ", component, " length ",len(data),\
" bytes"

event = emaneeventpathloss.EventPathloss(data)

entries = event.entries()

for e in entries.values():
print e

Listing 19.6: Python EventPathloss handler example.

19.5 EventCommEffect

The Python EventCommEffect module provides an interface for creating and accessing Comm Effect Events.
Comm Effect Event entries are returned as a dictionary of tuples:

{1: (1, 0, 0, 0, 0, 65, 0, OL, OL),
2: (2, 0, 0, 0, 0, 65, 0, OL, OL),
3: (3, 0, 0, 0, 0, 65, 0, OL, OL),
4: (4, 0, 0, 0, 0, 65, 0, OL, OL),
5: (5, 0, 0, 0, 0, 65, 0, OL, OL),
6: (6, 0, 0, 0, 0, 65, 0, OL, OL),
7: (7, 0, 0, 0, 0, 65, 0, OL, OL),
8: (8, 0, 0, 0, 0, 65, 0, OL, OL),
9: (9, 0, 0, 0, 0, 65, 0, OL, OL),

10: (10, 0, 0, 0, 0, 65, 0, OL, OL)}

Where, the dictionary key is the transmitter NEM Id associated with the tuple value and the tuple contains
the respective transmitter NEM Id, latency seconds, latency microseconds, jitter seconds, jitter microseconds,
percentage loss, percentage duplication, unicast bits per seconds and broadcast bits per second. Listing 19.7
contains sample code showing the creation and publication of a Comm Effect Event. Listing 19.8 contains
a sample Comm Effect Event handler.

© W N T A W N R

R I I O T T T TN
N e T R R R R I R T I RS

© O N O A W N e

P e
[NI CR N)

19.6. EVENTANTENNADIRECTION 161

Comm Effect Event contains a variable list of transmittting NEM Comm
Effect impairment enties.

commeffect = emaneeventcommeffect.EventCommEffect (10)

for index in range(0,10):
commeffect.set (index,

index+1,
0,
0,
0,
0,
65,
0,
oL,
oL)

service.publish(emaneeventcommeffect.EVENT_ID,
emaneeventservice.PLATFORMID_ANY,
emaneeventservice.NEMID_ANY,
emaneeventservice.COMPONENTID_ANY,
commeffect.export ())

Listing 19.7: Python EventCommEffect publish example. This listing is atypical. Comm Effect Events are usually tailored
to each NEM target since they represent the impairments from one ore more transmitters to a receiver.

def handleCommEffectEvent (event, platform, nem, component, data):
global commeffect

commeffect +=1

print "received commeffect event ", event, " platform ", platform,\
" nem ", nem, " component ", component, " length ",len(data),\
" bytes"

event = emaneeventcommeffect.EventCommEffect (data)

entries = event.entries()

for e in entries.values():
print e

Listing 19.8: Python EventCommEffect handler example.

19.6 EventAntennaDirection

The Python EventAntennaDirection module provides an interface for creating and accessing Antenna Direc-
tion Events. Antenna Direction Event entries are returned as a dictionary of tuples:

{1: (1, 0.0, 90.0, 180.0, 10.0),
2: (2, 0.0, 270.0, 180.0, 10.0),
3: (3, 0.0, 90.0, 180.0, 10.0),
4: (4, 0.0, 270.0, 180.0, 10.0),
5: (5, 0.0, 90.0, 180.0, 10.0),
6: (6, 0.0, 270.0, 180.0, 10.0),
7: (7, 0.0, 90.0, 180.0, 10.0),
8: (8, 0.0, 270.0, 180.0, 10.0),
9: (9, 0.0, 90.0, 180.0, 10.0),
10: (10, 0.0, 270.0, 180.0, 10.0)}

Where, the dictionary key is the NEM Id associated with the tuple value and the tuple contains the respective
NEM Id, antenna elevation in degrees, antenna azimuth in degrees, antenna elevation beam width in degrees
and antenna azimuth beam width in degrees. Listing 19.9 contains sample code showing the creation and
publication of an Antenna Direction Event. Listing 19.10 contains a sample Antenna Direction Event handler.

© W N T A W N R

N
S ©®NO O A WN RO

© W N O A W N e

PR R e e
NI Oy

162 CHAPTER 19. EVENT SERVICE PYTHON BINDINGS

Antenna Direction Event contains a variable list of NEM directional antenna
pointing and profile information
antennadirection = emaneeventantennadirection.EventAntennaDirection (10)

antennadirection.set(0,1,0,90,180,10)
antennadirection.set(1,2,0,270,180,10)
antennadirection.set(2,3,0,90,180,10)
antennadirection.set (3,4,0,270,180,10)
antennadirection.set(4,5,0,90,180,10)
antennadirection.set(5,6,0,270,180,10)
antennadirection.set (6,7,0,90,180,10)
antennadirection.set(7,8,0,270,180,10)
antennadirection.set(8,9,0,90,180,10)
antennadirection.set(9,10,0,270,180,10)

service.publish(emaneeventantennadirection.EVENT_ID,
emaneeventservice.PLATFORMID_ANY,
emaneeventservice.NEMID_ANY,
emaneeventservice.COMPONENTID_PHYI,
antennadirection.export ())

Listing 19.9: Python EventAntennaDirection publish example.

def handleAntennaDirectionEvent (event, platform, nem, component, data):
global antenna

antenna +=1

print "received antenna direction event ", event, " platform ", platform,)\
" nem ", nem, " component ", component, " length ",len(data), " bytes"

event = emaneeventantennadirection.EventAntennaDirection(data)

entries = event.entries()

for e in entries.values():
print e

Listing 19.10: Python EventAntennaDirection handler example.

19.7 Demonstrations

The following demonstrations were designed to re-enforce the material covered in this chapter. Deploy and
review each demonstration.

19.7.1 Demonstration 20

This demonstration uses two sample Python scripts to illustrate how to use the Python Event Service
bindings.

19.7.1.1 Demonstration Procedure

1. Review the Demonstration 20 sample Python scripts using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/20
[emane@emanedemo 20] less eventpublisher.py eventsubscriber.py

2. Start the eventsubscriber.py script.

[emane@emanedemo 20]$./eventsubscriber.py

19.7. DEMONSTRATIONS 163

3. In a separate terminal start the eventpublisher.py script.

[emane@emanedemo ~] cd /home/emane/demonstration/20
[emane@emanedemo 20]$./eventpublisher.py

4. Observer the output from the event subscriber script.

received commeffect event 207 platform O nem O component O 1length 382 bytes

(1, 0, 0, 0, 0, 65, 0, OL, OL)
(2, 0, 0, 0, 0, 65, 0, OL, OL)
(3, 0, 0, 0, 0, 65, 0, OL, OL)
(4, 0, 0, 0, 0, 65, 0, OL, OL)
(5, 0, 0, 0, 0, 65, 0, OL, OL)
(6, 0, 0, 0, 0, 65, 0, OL, OL)
(7, 0, 0, 0, 0, 65, 0, OL, OL)
(8, 0, 0, 0, 0, 65, 0, OL, OL)
(9, 0, 0, 0, 0, 65, 0, OL, OL)

(10, 0, 0, 0, 0, 65, 0, OL, OL)
received pathloss event 203 platform O nem O component 2 Ilength 102 bytes

(1, 100.0, 100.0)
(2, 100.0, 100.0)
(3, 100.0, 100.0)
(4, 100.0, 100.0)
(5, 100.0, 100.0)
(6, 100.0, 100.0)
(7, 100.0, 100.0)
(8, 100.0, 100.0)
(9, 100.0, 100.0)

(10, 100.0, 100.0)

received location event 204 platform O nem O component O length 142 bytes
(1, 40.031075, -74.523517, 3)

(2, 40.031165, -74.523411, 3)

(3, 40.031227, -74.523246, 3)

(4, 40.031289, -74.523094, 3)

(5, 40.03136, -74.522942, 3)

(6, 40.031432, -74.522835, 3)

(7, 40.031075, -74.523517, 3)

(8, 40.031165, -74.523411, 3)

(9, 40.031227, -74.523246, 3)

(10, 40.031289, -74.523094, 3)

received antenna direction event 209 platform O nem O component 2 length 182 bytes

(1, 0.0, 90.0, 180.0, 10.0)
(2, 0.0, 270.0, 180.0, 10.0)
(3, 0.0, 90.0, 180.0, 10.0)
(4, 0.0, 270.0, 180.0, 10.0)
(5, 0.0, 90.0, 180.0, 10.0)
(6, 0.0, 270.0, 180.0, 10.0)
(7, 0.0, 90.0, 180.0, 10.0)
(8, 0.0, 270.0, 180.0, 10.0)
(9, 0.0, 90.0, 180.0, 10.0)

(10, 0.0, 270.0, 180.0, 10.0)

5. Stop the eventsubscriber.py script.

“C

Location Event 1
Comm Effect Event 1
Pathloss Event 1
Antenna Direction Event : 1

19.7.1.2 Concept Review

1. Which libemaneeventservice configuration file was used during this demonstration?

164 CHAPTER 19. EVENT SERVICE PYTHON BINDINGS

© W N oA W N e

BoR e
N B O

Chapter 20

EMANE Library Python Bindings

The EMANE Library Python bindings are contained in the Python emane module. By importing the emane
module, a Python script can configure and run the equivalent of any of the EMANE applications: emane,
emanetransportd, emaneeventservice and emaneeventd, alone or together. Configuration is performed via
Python tuples and does not require XML configuration. Access to the EMANE logger allows log level and
log destination configuration, similar to the application logger command line arguments.

The emane Python module wraps the C++ libemane library. Refer to the EMANE Developer Manual for
more information on the libemane API. The emane module API documentation is available via pydoc.

This chapter develops an example Python script that runs an NEM Platform Server, Transport container
and Event Agent container together. The resulting script is featured in Section 20.7.1 Demonstration 21 on
page 169.

20.1 Configuration

The EMANE Library bindings enable the execution of EMANE experiments from self-contained Python
scripts, without EMANE XML configuration. Listing 20.1 shows a code snippet that creates a config-
ured RF Pipe MAC Layer. Configuration is passed into the MAC Layer constructor as a Python tuple of
(name,value) tuples. The names and permissible values of the configuration items depend on the underlying
implementation and correspond to the parameters traditionally set by XML configuration.

The configuration tuple shown here is a canned example, constructed from literal values. In practice, the
user can construct these tuples using any useful method.

build a configured mac layer

macconfig = ((’enabletighttiming’, ’off’),
(’flowcontrolenable’, ’off’),
(’jitter’, °0’),

(’pcrcurveuri’,
>file:///usr/share/emane/models/rfpipe/xml/rfpipepcr.xml’),

(’datarate’, ’1000°),
(’flowcontroltokens’, ’10’),
(’delay’, ’07),
(’enablepromiscuousmode’, ’off’))
nemlayers.append (emane.MACLayer (nemid, ’rfpipemaclayer’, macconfig))

Listing 20.1: Python EMANE configuration excerpt.

165

o O W N e

o
B O © N O N WN R

166 CHAPTER 20. EMANE LIBRARY PYTHON BINDINGS

20.2 Logger

An emane.Logger instance can be used to set the verbosity and destination of the log statements generated
by constructed EMANE components. The default log destination is stdout. Output can be redirected to
a file, to the system logger or to an ACE Log Server running at a remote destination. Listing 20.2, shows
log output redirected to the file mylogfile.tzt at level 4. The numeric level corresponds to the option values
shown in Table 6.1.

Configure the EMANE logger to write to a file,
logger = emane.Logger ()
logger.redirectLogsToFile (’mylogfile.txt’)

set the log level. legal walues are 0 to 4, 4 is most verbose
logger.setLogLevel (4)

Listing 20.2: Python Logger.

20.3 Event Agent Manager

Four different top level managers can be built by the emane module. Each manager corresponds to one of
the EMANE applications:

e Platform is used by the emane application.

e TransportManager is used by the emanetransportd application.

e EventGeneratorManager is used by the emaneeventservice application.
e EventAgentManager is used by the emaneeventd application.

Listing 20.3 shows a function that creates and returns a configured EventAgentManager. The script follows a
pattern that will become familiar in subsequent examples:

1. Create the fundamental EMANE component (NEM Layer, Transport, Event Generator or Event
Agent).

2. Insert the component into the appropriate manager.
3. Use the manager to execute the contained components.

In this example, the manager contains one EventAgent, created first. It’s constructor takes the library name
of the agent implementation, the configuration tuple and an NEM Id. Some agents use the NEM Id to
discard all events except those destined for a specified NEM. The Event Service configuration for the agent
is passed in as a parameter because it is required by other builders in the top level example.

def buildEventAgentManager (nemid, eventserviceconfig):
build the agent manager
agentconfig = \
((’pseudoterminalfile’, ’/tmp/lxc-node/21/%d/var/lib/gps.pty’ % nemid),
(’gpsdconnectionenabled’, ’no’))

first the agents
agents = [emane.EventAgent (nemid, ’gpsdlocationagent’, agentconfig)]

then the manager
return emane.EventAgentManager (agents, tuple(eventserviceconfig))

Listing 20.3: Creating an EventAgentManager. This function is used in Listing 20.6.

© 0N OO W N e

e s
oG A W NP O

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

20.4. TRANSPORT MANAGER 167
20.4 Transport Manager

Listing 20.4 shows a function that creates and returns a configured TransportManager containing one Transport.
The code pattern is similar to the previous example. Create a Transport first. The transport constructor
takes the name of its implementing library, the configuration tuple and the NEM Id of the associated NEM.
In an intermediate step, each transport must be inserted into a TransportAdapter that handles the socket
communication to the NEM. Finally, a TransportManager is created from the list of adapters.

def buildTransportManager (nemid, endpointconfig):
build the transport manager

first the transport(s)

transportconfig = ((’devicepath’, ’/dev/net/tun’),
(’bitrate’, 20.0°),
(’mask’, ’255.255.255.0°),
(’>address’, °10.100.0.%d’ % nemid))
transport = emane.Transport(nemid, ’transvirtual’, transportconfig)

then an adapter for each transport, handles mem<->transport connection
adapters = []
adapters.append(emane.TransportAdapter (transport, tuple(endpointconfig)))

then the manager
return emane.TransportManager (adapters, ())

Listing 20.4: Creating a TransportManager. This function is used in Listing 20.6.

20.5 Platform Server

Listing 20.5 shows a function that creates and returns a configured Platform Server, an instance of the
Platform class. Platform creation requires more steps than the other managers, but the usual pattern holds.
To create an NEM, create a list of NEM Layers with the same NEM Id. The NEM constructor constructs
its stack from the list by placing the first element at the top of the stack, nearest the Transport, and each
subsequent layer in order beneath. A Platform is created from a list of NEMs, its own configuration tuple
and a user defined Platform Id. EMANE events can be addressed to individual platforms based on Platform
Id (Section 4.1 Event Service on page 33). Assign Platform Ids uniquely in a multi-platform emulation to
differentiate events by platform.

The emane module will not create more than one Platform in a given script.

def buildPlatform(nemid, endpointconfig, eventserviceconfig):
build the layers for our nem stack from top to bottom
nemlayers = []

first mac
macconfig = ((’enabletighttiming’, ’off’),
(’flowcontrolenable’, ’off’),
(’jitter’, ’07),
(’pcrcurveuri’,
file:///usr/share/emane/models/rfpipe/xml/rfpipepcr.xml’),

(’datarate’, ’10007),
(’flowcontroltokens’, ’107),
(’delay’, ’07),
(’enablepromiscuousmode’, ’off’))
nemlayers.append (emane.MACLayer (nemid, ’rfpipemaclayer’, macconfig))
then phy
phyconfig = ((’noiseprocessingmode’, ’off’),
(’antennatype’, ’omnidirectional’),
(’frequencyofinterest’, ’2347000°),
(’antennaazimuth’, °0.0°),

(’antennaelevation’, °0.0°),

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7

© 0 NG W N e

NN RN NN NN B B B e s s e e
N0 TR DN RO 00N O ®N R O

168 CHAPTER 20. EMANE LIBRARY PYTHON BINDINGS

(’antennagain’, ’0.0°),

(’txpower’, ’0.0°),

(’bandwidth’, °1000°),

(’frequency’, ’2347000°),

(’antennaelevationbeamwidth’, ’180.0°),

(’pathlossmode’, ’freespace’),

(’subid’, ’27),

(’systemnoisefigure’, ’4.07%),

(’defaultconnectivitymode’, ’on’),

(’antennaazimuthbeamwidth’, °360.0°))
nemlayers.append (emane.PHYLayer (nemid, ’universalphylayer’, phyconfig))

then an NEM from mac and phy
nems = []
nems . append (emane . NEM(nemid, nemlayers, tuple(endpointconfig)))

then the platform server from the nem(s)
platformid = 1

platformconfig = tuple(eventserviceconfig +
[(’otamanagerdevice’,’eth0’),
(’otamanagergroup’,’224.1.2.8:45702°),
(’otamanagerchannelenable’,’on’) 1)

return emane.Platform(platformid, nems, platformconfig)

Listing 20.5: Creating a Platform Server. This function is used in Listing 20.6.

20.6 Putting It Together

Listing 20.6 shows a top level main function that builds three managers using the functions from previous
examples. The log level is set to maximum output. transportendpoint, platformendpoint and Event Service
configuration are defined here because they are needed by more than one build function.

The script calls the start method of the returned managers to run them. It pauses for an external signal
while they execute and calls their stop method to clean up on exit.

The important thing to note here is that the developed Python script essentially configures and executes an
instance of emane, emanetransportd and emaneeventd within one OS process and without external configura-
tion.

def main():

set the log level
logger = emane.Logger ()
logger.setLoglevel (4)

pass in the NEM Id
nemid = sys.argv[1]

platform<-->transport config common to platform and transport
endpointconfig = [(’platformendpoint’, ’localhost:%d’ % (8200 + nemid)),
(’transportendpoint’, ’localhost:%d’> % (8300 + nemid))]

eventservice config, common to platform and agents
eventserviceconfig = [(’eventservicegroup’, ’224.1.2.8:45703’),

(’eventservicedevice’, ’eth0’)]

build the application containers

transportmanager = buildTransportManager (nemid, endpointconfig)
platform = buildPlatform(nemid, endpointconfig, eventserviceconfig)
eventagentmanager = buildEventAgentManager (nemid, eventserviceconfig)

start containers
platform.start ()
transportmanager.start ()
eventagentmanager.start ()

28
29
30
31
32
33
34
35

20.7. DEMONSTRATIONS 169

wait while they work
s = SignalHandler (signal.SIGINT)
s.wait ()

stop containers
eventagentmanager.stop ()
platform.stop ()
transportmanager.stop ()

Listing 20.6: A main function running three managers.

20.7 Demonstrations

The following demonstration is designed to re-enforce the material covered in this chapter. Deploy and
review the demonstration.

20.7.1 Demonstration 21

This demonstration deploys a ten node distributed RF Pipe NEM emulation experiment illustrated in Fig-
ure 20.1. Each node executes a Python script similar to the one developed above.

Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual Virtual

Transport Transport Transport Transport Transport Transport Transport Transport Transport Transport
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10
NEM 1 NEM 3 MNEM 3 MNEM 4 MNEM 5 MNEM & NEM 7 NEM 8 MNEM 9 MNEM 10

I I I I I

1 50000
/\JZI (Ij: L 4 A\ 4 @ o
| s | | |
E\ ,": Fa E\ ; ~, /E E \
:-. _[,' I\-l) T [: ."-l-"l | l_/;

Platform 1 Platform 2 Platform 3 Platform 4 Platform &5 Platform 6 Platform 7 FPlatform 8 Flatform 9 Platform 10
NEM 1 NEM 2 MNEM 3 MNEM 4 MEM & NEM & NEM 7 NEM 8 MNEM 9 MNEM 10
node-1 node-2 node-3 node-4 node-5 node-6 node-7 node-8 node-9 node-10

Figure 20.1: Demonstration 21 - Ten node distributed RF Pipe NEM deployment.

20.7.1.1 Demonstration Procedure

1. Review the runemane.py sample Python script using your favorite editor.

[emane@emanedemo ~] cd /home/emane/demonstration/21
[emane@emanedemo 21] less runemane.py

2. Deploy the demonstration.
[emane@emanedemo 21] sudo ./lxc-demo-start.sh

3. Connect to virtual node-1

[emane@emanedemo 21] ssh node-1

170 CHAPTER 20. EMANE LIBRARY PYTHON BINDINGS

4. Review the running processes

[emane@node-1 ~1$ ps ax

PID TTY STAT TIME COMMAND
17 S+ 0:00 /usr/lib/lxc/lxc-init -- /tmp/lxc-node/21/1/init.sh -s 17:45:27
57 Ss 0:00 /usr/sbin/sshd -o PidFile=/tmp/lxc-node/21/1/run/sshd.pid
87 S1 1:46 /usr/bin/python /home/emane/demonstration/21/runemane.py -d 1

--logfile /tmp/lxc-node/21/1/var/log/emane.log

24 7 S<s 0:13 gpsd -n -b /dev/pts/0

29 7 Ssl 1:35 /usr/local/bin/olsrd -f /home/emane/demonstration/21/olsrd.conf
97 ? Ss 0:00 sshd: emane [priv]

99 7 S 0:00 sshd: emane@pts/1

100 pts/1 Ss 0:00 -bash

161 pts/1 R+ 0:00 ps ax

5. Open the OLSR Viewer application to monitor the emulated network. From the top panel select OLSR
Viewer from the launcher to the right of the Firefox launcher.

6. Disconnect from node-1.

[emane@node-1 ~]$ exit
logout
Connection to node-1 closed.

7. Stop the demonstration.

[emane@emanedemo 21] sudo ./lxc-demo-stop.sh

20.7.1.2 Concept Review

1. How many Platform Servers can one Python script create?

2. When creating a structured NEM, should the MAC or PHY occur first in the layer list of the NEM
constructor?

3. How should the script be modified to create a centralized deployment?

Bibliography

Protean Research Group. EmulationScript Schema Description. United States Naval Research Laboratory
Code 5522, 2010.

171

